
MATHEMATICAL RATIONALITY 
AND REALITY

Metaphysical and Theological 
Consequences

JAVIER LEACH
Universidad Complutense de Madrid

ABSTRACT: Is formal mathematics a precise and objective instrument in order to express with objec-
tivity our knowledge of the real world? The reduction of deductive reasoning to formal rules is a cha-
llenge which underlies the mechanicist ideal. Formal languages convert propositions into objects which
can be handled by computers and have approximated human thought to that of computers. The results
of formal mathematics cannot be complete and, therefore, they are open to several possibilities which
cannot be predetermined in all cases. Another source of indeterminacy lies in the probabilistic and cha-
otic nature of the real world laws. This means that mathematical activity is, of necessity, faced with the
risk of choosing from several possibilities. The opening up of mathematics to risk is not an opening up
to irrationality. On asking meta-rationally for the permanence of global rationality, we verify that the con-
sistency of the systems and the exclusion of mutual contradiction in their co-existence, is a meta-ratio-
nal value, with metaphysical and theological consequences.
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Racionalidad matemática y realidad
Consecuencias metafísicas y teológicas

RESUMEN: ¿Es la matemática formal un instrumento preciso y objetivo para expresar con objetividad
nuestro conocimiento del mundo real? El uso de reglas formales en el razonamiento deductivo es un
reto que subyace al ideal mecanicista. Los lenguajes formales convierten las proposiciones en obje-
tos que pueden ser manipulados por computadores. Por otra parte, el desarrollo de la matemática ha
mostrado que la matemática formal no puede ser completa. Otra fuente de indeterminación procede
del carácter indeterminado y probabilístico de las mismas leyes del mundo real. Esto significa que la
actividad matemática está necesariamente confrontada con el riesgo de elegir entre diversas posibi-
lidades. Sin embargo, la apertura de la matemática al riesgo no es una apertura a la irracionalidad.
Preguntándonos meta-racionalmente por la permanencia de la racionalidad global, observamos que
la consistencia de los sistemas, entendida como exclusión de contradicción interna y exclusión de
mutua contradicción, es un valor meta-racional cuya permanencia tiene consecuencias metafísicas y
teológicas.

PALABRAS CLAVE: Lenguajes formales, teorías consistentes, completitud, leyes del mundo real, meta-
racionalidad.

INTRODUCTION

What is reality? What role does mathematics play in the knowledge of reali-
ty? What vision does mathematics give us of reality? Frequently we consider that
science brings us to the knowledge of objective reality as it is because science
contributes what we call objective knowledge. Knowledge is objective when it is
independent of the subject who knows. Objective knowledge is public and is not
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taught in esoteric circles. It is taught at school and at university. Objective knowl-
edge is independent of the oscillations of our subjectivity. Does science achieve
its purpose of providing us with objective knowledge of reality? Is there scien-
tific knowledge which is totally objective? As we shall see, the formal language
of mathematics allows us to have a high degree of objectivity regarding the for-
mulation of scientific knowledge. Is this objectivity total? To what extent can
mathematics objectively formulate all scientific knowledge?

The first prerequisite for mathematics to formulate objective knowledge is
that mathematics itself be objective. This will be the first question I pose in this
paper, Are the mathematical theories really objective and independent of the sub-
ject who formulates them? As well as clarifying whether mathematics is objec-
tive, it is necessary to clarify the relationship between our mathematical knowl-
edge and our knowledge of reality. The second question I will answer will be,
What is the relationship between mathematics and reality?

The answers to these two questions will be paradoxical to some extent. I will
show how the mathematical formulation is in fact a privileged resource which
enables us to express knowledge of reality with a maximum degree of objectivity.
However, at the same time, I will also show how knowledge formulated mathe-
matically is plural, is open to a number of possible conceptions of mathematics,
and, according to one conception of mathematics, it is open to the risk of choos-
ing different hypotheses, a risk which is technically called undecidability, as it is
based on the fact that we do not have reasons to decide on one hypothesis from
several.

I will finish this paper by asking myself how the endeavours to ensure the
clarification and rational objectivisation of mathematics as a formal science is
projected on metaphysics. Metaphysics endeavours to reflect on the fundamental
trans-experiential fundamentals of the knowledge of reality. The pluralism of
formal systems and their inability to totally prevent the risk inherent to mathe-
matically undecidable situations will lead us to ask about the rationality of
inevitable decisions which mathematics forces us to take. If mathematics does
not allow us to decide rationally in all cases, what rationality do we use in cases
in which mathematics does not guide our decisions? The formal sciences lead
us to a necessary opening up of knowledge to risk. This will be the third ques-
tion in the paper, In what sense can it be rational to assume the risk of commit-
ting errors?

As a consequence of this approach, I will defend the legitimate relationship
between reflection on formal sciences and theological reflection. For theology,
God is the ultimate basis of reality. Metaphysics asks about the ultimate basis
of reality. Theological reflection cannot avoid its relationship with metaphysi-
cal reflection as both ask about the ultimate basis of reality. If reflection on for-
mal sciences leads us in the end to reflect on metaphysics, this reflection will
affect theology. The fourth question in the paper will be, What relationship is
there between formal sciences, metaphysics and theology?
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1. ARE THE MATHEMATICAL THEORIES OBJECTIVE AND INDEPENDENT OF THE SUBJECT

WHO FORMULATES THEM?

I will respond to this first question by reflecting on the historical evolution
of mathematics, just as this evolution has occurred in the cultural context of
modern science. We can say that the cultural context of modern science was
created in Europe at the beginning of the XVII century around certain signifi-
cant figures such as Galileo (1564-1642), Descartes (1596-1650), Newton (1643-
1727), Leibniz (1646-1716)… Since then, modern science has continued to evolve
up to the present time.

I will describe some epistemological features which have marked the cultural
context of modern science, and will point out the singular role which mathe-
matical formulation has had on scientific knowledge. I will then move on to
focus on mathematics itself and will outline the historical process of the evolu-
tion of the epistemological conception of mathematics, pointing out several land-
marks or historical moments in time which are keys to this evolution.

The cultural context of modern science: Empirical knowledge and mathemati-
cal formulation. Modern science arises from the formulation of empirical obser-
vations obtained by precise technical instruments and constructed in accor-
dance with formal mathematical theories. In modern science both mathematical
formulation and empirical observation are important. However, mathematical
formulation is especially important as mathematics is not only used to formu-
late scientific theories but to design the observation devices. Galileo made a
famous statement on the relationship between mathematics and empirical knowl-
edge in 1610 1,

«Philosophy [nature] is written in this grand book which is always before our
eyes, I mean the universe, but we cannot understand it unless we first learn the
language and understand the symbols in which it is written. The book is written
in mathematical language, and the symbols are triangles, circumferences and
other geometric figures, and without their help it is impossible to understand even
a word of it, and one wanders in vain through a dark labyrinth» 2.

On September 8, 1950, David Hilbert read a paper at the Congress of the
Association of Scientists of Nature and Medical Doctors. In this paper, Hilbert,
stated the importance of mathematical formulation for the specific, practical
knowledge of reality, and as a protection for the autonomy of mathematics as
a discipline independent of its applications,

«Mathematics is the instrument which links theory and practice, thought with
observation. Thus, our culture, to the extent that it is based on intellectual knowl-
edge and in the control of nature, is based on mathematics… in fact, we can say
that we do not control a scientific theory of nature until we have extracted its
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mathematical nucleus and have left it completely clean… however, despite this,
mathematics has always rejected making its value depend on its applicability…
the development of modern science depends on the development of the capacity
for empirical observation and the capacity for mathematical formulation».

The historical evolution of mathematics. Science is not a static phenomenon.
Science has been growing through several crises and changes. The philosopher
Thomas Kuhn has described these changes as scientific revolutions 3. Mathe-
matics, as an essential part of science, is not a static phenomenon either. In
recent centuries, mathematics has gained in objectivity. The mathematical propo-
sitions and theories are progressively expressed with more precision in a lan-
guage which has become more and more clear and objective. I will now point
out some periods of this historical process which led mathematics towards find-
ing its more formal and abstract dimension, as objective, independent knowl-
edge, or at least with the possibility of becoming independent of the empirical
experience of the physical world. Throughout these periods, mathematics became
a more objective and autonomous knowledge. In the XVII and XVIII centuries,
mathematics seemed to be firmly established on the simple unshakable foun-
dation of numbers and geometry. It was a clear language which referred to clear
geometric and figures arithmetical signes. The foundations of mathematics were
not questioned. Throughout the XIX century, mathematics was liberated from
its dependence on the geometric-numerical intuition. One pioneering case of
the liberation was the appearance of non-Euclidean geometries.

The overcoming of a naïve vision of geometric intuition. Since ancient times,
geometric perception has been at the base of mathematics. Euclid (365-300? BC)
in his Elements formulated fundamental propositions of Geometry in the form
of axioms or postulates. Until the XIX century, the book of Elements of Euclid
was paradigmatic as regards the study of Geometry. The fifth postulate of Euclid,
as it appears stated in the Elements, states that «If a straight line crossing two
straight lines makes the interior angles on the same side less than two right angles,
the two straight lines, if extended indefinitely, meet on that side on which are the
angles less than the two right angles». A shorter and equivalent way to state this
postulate is owed to Proclo (411-485), «Through a point which is external to a
straight line, it is possible to draw one and only one line parallel to this».

The intuition of the infinite. The fifth postulate differs from the other postu-
lates in that it refers to the behaviour of straight lines to infinity. And the in-
tuition of the infinite is conceptually separated from the intuition of finite objects.
This has meant that its relationship with the other postulates has attracted geo-
metricians throughout history. Proclo (411-485) wrote a commentary to Euclid
in which he attempted to derive the fifth postulate from the others.

Independence of the fifth postulate. The problem whether the fifth postulate
of Euclid is an axiom which is independent of the others, that is to say, whether

696 J. LEACH, MATHEMATICAL RATIONALITY AND REALITY

PENSAMIENTO, vol. 63 (2007), núm. 238 pp. 693-711

3 KUHN, T., The Structure of Scientific Revolutions, Chicago, University of Chicago Press,
1970 [La estructura de las revoluciones científicas, México, FCE, 1971].



it is possible or not to deduce this from the other postulates, continued to intrigue
geometricians. Among those who have studied this problem are the Italian Jesuit
Sacheri (1667-1733) and the German philosopher Lambert (1728-1777). In his
work Euclides ab Omni Naevo Vindicatus, Saccheri tried to prove the fifth pos-
tulate of Euclid supposing that it was false. He tried to derive a contradiction
from the other postulates and its falsity. He would, thus, have proved that the
fifth postulate is deduced from the other postulates, and, therefore, is not inde-
pendent of these.

New perspectives in geometry. The Russian mathematician Nicolai Ivanovich
Lobachevski (1793-1856), followed the route of Sacheri and Lambert, and
assumed the hypothesis contrary to the fifth postulate of Euclid, that is to say,
«through a point which is exterior to a straight line, it is possible to draw at least
two lines parallel to this straight line». Based on this new postulate, in contra-
diction with the fifth postulate of Euclid, Lobachevski developed a new geom-
etry without finding any contradiction. Lobachevski called his new geometry
‘imaginary’ as he did not find a «real» model for it.

The importance of logical consistency. One very important point to stress in
the evolution of mathematical thought is that the strength of the argument of
Lobachevski was not within the ‘traditional’ intuition of ‘real’ space, but within
the logical consistency of his arguments. That is to say, in the absence of con-
tradiction. Non-Euclidean geometry supposes that the fifth postulate of Euclid
is false. The negation of the fifth postulate makes it possible to build ‘several
geometric worlds’ and break the uniqueness of the intuitive world of classical
geometry. Non-Euclidean geometry gives preference to logic over geometric
intuition. However, from the fact that the arguments of Lobachevski might be
consistent it was not deduced that non-Euclidean geometry was consistent, in
the sense that a contradiction would not appear in it at some time.

Consistency of non-Euclidean geometries. Felix Klein (1849-1925) proved that
non-Euclidean geometry is consistent (a contradiction cannot be deduced from
its postulates) if Euclidean geometry is consistent. That is to say, he reduced the
problem to proving the consistency of non-Euclidean geometry to the problem
of proving the consistency of Euclidean geometry.

The connection between algebra and logic. The non-Euclidean geometries gave
priority to the rigour of logical deduction as opposed to the geometrical intuitive
perception of reality as had been usual until then. The rigour of logical deduction
was not something new in the world of mathematics. The formalisms of mecha-
nical deduction had been known since ancient times. The relationship between
mathematics and the mechanicist formalisms has its roots in history. At the start
of the XIV century, the philosopher from Majorca, Ramón Llull, used complex
mechanical techniques in his «Ars magna generalis summa», together with sym-
bolic notation for the general formulation of knowledge. The start of modern sci-
ence coincided with a more systematic use of algebra. The algebraic formalisms
made it possible to mechanically structure the scientific observations which were
shown in empirical experience, with a determinist character. The explosion of
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mathematical research at the beginning of the XVII century was nourished from
the point of view of algebra by two fundamental contributions 4: 1. Systematisa-
tion as regards the handling of algebraic expressions. 2. The reduction of geome-
try to algebra by representing points of geometry by pairs of numbers. Descartes
(1596-1650) and Fermat (1601-1665) are important at that moment. It was ne-
cessary to wait until the XIX century for George Boole (1815-1864) to apply alge-
braic methods to logic and develop logic as a part of algebra.

A formally mechanical deductive system. In the second half of the XIX centu-
ry, Gottlob Frege (1848-1925) constructed the first formal logical system which
includes all the deductive reasoning of ordinary mathematics. In 1879 Frege
published Begriffsschrift, ‘Concept Notation’, with the subtitle, ‘a language of for-
mulas for pure thought in the likeness of arithmetic’. Frege intended that math-
ematics be constructed as a superstructure which had formal logic as its base.
He introduced specific symbols for logical relationships in order to prevent con-
fusion. He used quantifiers ∀, ∃. Concept Notation made it possible to represent
the logical inferences as formal mechanical operations called rules of inference,
which are based only on the way the symbols are placed.

At the end of the XIX century and the beginning of the XX century the develop-
ment of mathematics as a formal objective system was sufficiently mature to be
able to ask this question, Can mathematics justify itself as a purely formal sci-
ence? The foundation of mathematics as a purely formal science would proof
that mathematical knowledge is certain, secure, objective and public, and we
can have complete confidence in mathematics. The reduction of deductive rea-
soning to formal rules is a challenge which underlies the mechanicist idea of
representing human reasoning through a formal mechanism. If this reduction
were possible, we could entrust all reasoning to a mechanism which executes
orders given in a formal language.

David Hilbert (1862-1943) and the meta-mathematical program. Meta-mathe-
matics uses mathematics as a language to speak about mathematics as an object.
In meta-mathematics the mathematical objects are represented by mathemati-
cal formulas, and these are reasoned from mathematics itself. The truth and fal-
sity of mathematical theories is expressed by means of formal functions between
these theories and its mathematical models. The meta-mathematical program
intends to proof that the mathematical theories are consistent, complete and
semantically-decidable by meta-mathematical finite resources. A theory is con-
sistent when we cannot deduce a contradiction within it. A theory is complete
if any true formula in the system can be formally proved from certain axioms.
And a theory is semantically-decidable if we have a formal procedure for decid-
ing whether a given formula is true in a given model or not. If a system is incon-
sistent, we can deduce any formula in it and the system will lose its logical value.
If a system is incomplete, we will not be capable to derive formally from the
given axioms all true propositions of the system.
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Mathematical foundationalism of Hilbert. Hilbert intended to establish mathe-
matics as a basis of certain and objective knowledge. If the meta-mathematical
program was a success, the consistent, complete and decidable systems of mathe-
matics would provide a secure instrument for science to access reality. The secu-
rity of mathematical knowledge would be based on epistemological certainty
transmitted by certain signs whose properties are described by the basic axioms
of mathematics. In a course given by Hilbert on ‘Elements of Euclidean Geo-
metry’ in 1898, Hilbert stressed that it should be shown that geometrical theo-
rems are deduced from certain axioms through pure logic with no dependence
on geometric intuition, and with this he highlighted the logical-formal value of
mathematics. According to a famous anecdote, the theorems had to continue
being valid if, instead of points, lines and planes, we speak of ‘tables, chairs and
glasses of beer’, on condition that it is supposed that these objects obey these
axioms.

Crisis of the Hilbert programme. The theorem of completeness and the theorems
of incompleteness of Gödel. In his doctoral thesis Kurt Gödel (1906-1978) proved
that all the propositions logically valid, that is to say, all the logical propositions
which are true in all the models can be obtained from a system of logical axioms.
This result is called ‘completeness of the logic of predicates of first order’. Once
Gödel had proved that logic was a complete system. The next step was to proof
that arithmetic was a complete system. However, later on, by using meta-mathe-
matical methods, Gödel proved that the formal system of arithmetic is incom-
plete. That is to say, regardless of the fact that additional first order axioms are
added to the system of arithmetic on condition that the new axioms do not lead
to a contradiction (i.e. a proposition of the type A ∧ ¬A), there will be a propo-
sition U which will be undecidable in the system of arithmetic. That is to say,
within the formal system of arithmetic, U cannot be deduced from the axioms.
Therefore, it is not possible ‘to decide’ whether U belongs to the system or not.
Gödel also proved that, if arithmetic is consistent, then it is not possible to proof
within the system of arithmetic the formal proposition which expresses the con-
sistency of arithmetic.

The incompleteness of arithmetic proves that we cannot construct an axioma-
tic system from which we can deduce all the propositions valid in arithmetic. From
any axiomatic system we can only deduce part of the arithmetic. This can be
explained graphically, one day we go into a shop and, in order to know the price
of a purchase we have made, we make some arithmetical calculations. Another
day, we are faced with more complicated arithmetical calculations and we also
resolve these. It is as if we were in the dark room of arithmetic when we make
arithmetical calculations and we illuminate part of the room with a lantern and
resolve our problem regarding a particular object in the room in each case. The
problem of the completeness of arithmetic consists of asking if there is a way to
illuminate all the «arithmetic room» at the same time. Incompleteness tells us that
it is not possible to illuminate everything through an axiomatic system. Any illu-
mination we make will be partial, just as the illumination of a lantern is partial.
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It is important to point out that the proof of incompleteness of arithmetic pre-
supposes that arithmetic is consistent. The proposition obtained by Gödel is con-
ditional: if arithmetic is consistent, then it cannot be complete. Consistency remains
as a value of any logical-mathematical proposition which cannot be renounced.
Moreover, from the incompleteness of arithmetic it is deduced that we cannot
proof the consistency of arithmetic from within the arithmetic. That is to say, in
order to proof the consistency of arithmetic, we need to be supported by another
meta-theory external to arithmetic, whose consistency we must also presuppose.

Pluralism in the conception of mathematics. According to the classical con-
ception, a mathematical proposition is either valid or it is not. This classical
principle is frequently called in Latin the principle of ‘tertio excluso’. According
to this principle, in order to proof the validity of a proposition, it is sufficient to
proof that a contradiction is deduced from its negation. Furthermore, in the
mathematics we call classical, the existence of infinite sets is admitted. This clas-
sical way of reasoning is at the base of the reasoning of Hilbert and Gödel. When
the programme of Hilbert entered a crisis, the classical conception of mathe-
matics also entered a crisis. There are other conceptions of mathematics such
as the intuitionist/constructivist conceptions, which have a stricter attitude and
only admit propositions which are effectively proved as valid. Depending on the
schools, this conception leads them to different types of restrictions as regards
the existence of sets with infinite elements as we cannot construct an infinite
set effectively. Outstanding among the constructivist mathematicians is the
Dutch mathematician L. E. J. Brouwer (1881-1966). The incompleteness of arith-
metic had proved the incapacity of classical arithmetic to completely describe
all the mathematical objects, Brouwer renounced presenting the problem of
completeness in the classical fashion and developed a stricter vision of mathe-
matical reasoning. For Brower only the propositions obtained through an effec-
tive proof referring to finite objects we have a direct intuition of are valid. Both
conceptions of mathematics can coexist separately. The propositions which have
a constructive proof are also classically valid. However, a constructivist will not
admit the logical axiom of the ‘tertio excluso’. Thus, it would be contradictory
if we introduced both conceptions within the same system. The existence of sep-
arate systems based on different conceptions of logic is not contradictory. Using
a meta-language based on classical logic, we can reflect on constructive logic.
From the outside, we can see that both logics have different approaches but nei-
ther of them proves the falsity of a theorem of the other. Moreover, we can con-
sider constructive mathematics as a subset (the constructive part) of classical
mathematics.

Pluralism in the conception of mathematical objects. Sets, Structures and Catego-
ries. Pluralism has been extended to the same conception concerning what the
mathematical objects are. Hilbert and Gödel described the mathematical objects
based on the theory of sets of Cantor. The theory of sets makes it possible to give
a semantic definition of the validity of a mathematical proposition. Using sets,
we can say that a mathematical proposition is true in a certain set if the com-
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ponents of this set fulfil the relationships which appear in the proposition, and
if they are not fulfilled, we say that the proposition is false. We can specify this
with an example, we say that the proposition ‘2 + 3 = 5’ is true in the set of na-
tural numbers because the addition function is interpreted in the set of natural
numbers and is applied to the sets which we designate as ‘2’ and ‘3’ and returns
the set which we designate as the number ‘5’. It is interesting to note that sub-
sequently other theories have also been developed and these started from other
abstract and general descriptions of mathematical objects other than sets. Thus,
Bourbaki attempted to construct all modern mathematics based on the concept
of structure. Later, the concept of category appeared as a basic description of
mathematical objects, categories are not based on the concepts of sets and belong-
ing, but on the concepts of function and composition.

The plural coexistence of contrary formalisms. Classical mathematics and con-
structivism are formalisms with incompatible approaches. It would be contra-
dictory to admit that a system admits the principle of ‘tertio excluso’ and rejects
it at the same time. But we can speak of both types of mathematics and com-
pare them from the outside through a meta-language. The comparative meta-
study of incompatible systems makes it possible to isolate each system and inter-
relate the systems from the outside. This is like a cluster of grapes where each
seed is a system. Each system has internal consistency. We cannot unite two sys-
tems, making one system from two. This would be contradictory and we would
destroy them. However, we can unite them and form a cluster. The branches
are the meta-language. Each system is consistent and the cluster is also consis-
tent, but the systems must remain separate in order to maintain their consis-
tency. The meta-language allows us to have a vision of the plurality of formal
systems which is simultaneously open and consistent.

The problem of decidability. Formal logic and the mechanicist ideal. The incom-
pleteness of arithmetic was a failure of the mechanicist ideal, but the approach
to the problem of decidability and its resolution would, in some way, involve a
deepening of this failure. The mechanicist ideal consisted of obtaining a mechan-
ical artifice by which it would be possible to execute all the deductions. The
development of formal logic was a great step forward on the way to achieving
the mechanicist ideal. The deductions carried out through formal propositions
can be executed by a machine. Through the theorem of completeness of the first
order logic of predicates, Gödel had proved that any correct deduction could be
formally executed through the rules of deduction of the logic of predicates. Once
this problem was resolved, another important problem remained to be resolved,
the problem of decidability (Entscheidungsproblem): given some premises and
a conclusion, is it possible to effectively decide whether the conclusion is deduced
from the premises?5, that is to say, can we mechanically decide whether a propo-
sition belongs to a certain theory, by using the rules of deduction of the logic of
predicates of the first order? The mechanicist ideal was previous to and more
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general than the specific procedures of formal logic and the reasoning of the
theorem of incompleteness of Gödel, but the mechanicist artifice which sought
the mechanicist ideal had never been formally specified in history. Gödel had use
mechanical procedures, but when Gödel wrote his theorem of incompleteness,
there was still no general definition of a mechanical procedure in general.

The informal idea of a mechanical artifice. Informally the idea of a mechani-
cal artifice for deduction was present in the logical and algebraic procedures.
An ‘effective deduction’ is characterised by four properties. 1. Its conduct is go-
verned by a finite number of precise instructions (in computers this set of instruc-
tion is called a program). 2. The artifice is capable of executing these instruc-
tions in a finite number of steps (in computers we need that the processes
terminate). 3. The execution of these instructions does not permit any type of
initiative by the artifice which executes the instructions. (The instructions are
executed mechanically). 4. A human being who had sufficient time could simu-
late the execution of these instructions using a pencil and paper (the execution
can be represented formally).These are the informal characteristics of the mechani-
cal procedure with which some logicians and philosophers had dreamed would
have been able to make all the deductions.

The informal idea of a mechanical artifice corresponds with the informal idea of
the algorithm traditionally present in algebra. From ancient times, these four char-
acteristics of the ‘effective method’ were used informally and not rigorously in
order to characterise the algorithmic processes of algebra and formal logic, which
was already rudimentarily known by Aristotle. The key requirements of the ‘effec-
tive method’ are the finiteness of the processes and the mechanical or ingenuous
execution of the processes, lacking any intention or initiative alien to the method.

Alan Turing (1912-1954) specified the informal idea of the mechanical artifice
through what we call the Turing machine. In his paper in 1936 6 Turing present-
ed an exact formalisation of the informal concept of the ‘effective method’. Alon-
zo Church (1903-1995) had presented another different formalisation some
months previously 7. The formalisations of Turing and Church were different
but turned out to be equivalent in the sense that both described the same set of
procedures or functions. The Turing-Church thesis states that both sets of func-
tions, the one defined by Turing and the one defined by Church, contain exact-
ly the set of functions whose value can be calculated by what had until then been
called the ‘effective method’.

The Church-Turing thesis and mechanicism. The Church-Turing thesis 8 states
that the Turing machine and the lambda calculus can represent any formal effec-
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tive computation process. Although the Church-Turing thesis is not proved, its
evidence is commonly accepted by mathematicians. It is commonly accepted
that any formal algorithmic process which we can carry out can be represented
either of the mechanisms.

The undecidability of the formal systems. The halting problem or the problem
of detainment for Turing machines is the most well known example of the prob-
lem of undecidability. It consists of deciding if a Turing machine will stop or it
will remain in an infinite cycle. Once the mechanism of his machine was esta-
blished, Turing obtained a surprising result which strengthened the theorem of
incompleteness of Gödel. Turing proved that it is not possible to formally proof
in all cases whether a given program will stop or not.

Applied formalisms. The ideas of Church and Turing are at the core of cur-
rent theoretical computing. Moreover, the applicability of computing has deci-
sively affected the development of the applied dimension of the formal sciences.
It has highlighted applied dimensions, unknown until now, of languages and
formal models such as: pragmatism, experimentation, implementability and
efficiency. This has led to the plurality of logics, suited to several finalities. The
existence of a plurality of logics opens up new perspectives for scientific lan-
guage as each of these reflects a partial dimension of reasoning. In addition, on
applying its formalisms, computing has discovered new probabilistic properties
of algorithms.

The problem of complexity. In search of the best solution. In plural and unde-
cidable mathematics we are forced more and more to find different solutions to
the same problem. We need a criteria to determine which is the best solution
among these. The best solution will be the simplest. The least complex.

Computing and complexity. Half way through the sixties, A. N. Kolmogoroff
and Gregory J. Chaitin, independently, developed what Chaitin called «algo-
rithmic theory of information» which measures computational complexity. Given
that computing is formal mathematics applied to the development of algorithms,
two factors are very important: the time a machine requires to carry out a cal-
culation, and the size of a program, that is to say, the amount of information
which has to be communicated to a computer so that it can carry out an oper-
ation. Chaitin relates the algorithmic theory of information with the entropy
which measures the level of disorder of a system. For Chaitin the size of a com-
puter program is analogous with the degree of disorder of a physical system:

«It is sufficient to think of the principle of “Occam’s razor”: the simplest theo-
ry is the best one. What is a theory? It is a computer program for the prediction
of observations. The affirmation that the best theory is the simplest one becomes
the affirmation that a concise computer program constitutes the best theory. And
if there is no concise theory? And if the shortest program capable of reproducing
a set of experimental data is the same size as the set of data? In this case, the
theory is of no use, it is a performance, the data is incomprehensible, random. A
theory is only good insofar as it compresses the data to the point of creating a
system of theoretical hypotheses and rules o deduction, which is much smaller.
Thus, we could define random as what cannot be compressed. The only way to
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describe an object or number which is completely random to a person is to show
it to him and say, “Here it is”» 9.

Complexity and incompleteness. The theorem of incompleteness of Gödel
appears again. The study of the complexity of a program is necessarily incom-
plete:

«The complexity of something is measured by the size of the minimum pro-
gram of the computer which makes it possible to calculate it. However, how can
we be sure that we have the minimum program? The answer is that we cannot.
This is one of my favourite propositions on incompleteness, If we have n bits of
axioms, it will never be possible to proof that a program is the smallest possible
if its size exceeds n bits… The set of axioms which mathematicians normally use
is quite concise, if this were not so, nobody would believe in them. In practice,
there is a vast world of mathematical truths, an infinite amount of information,
while any set of axioms only takes in a finite, minute amount of this informa-
tion. This is why, in short, the theorem of incompleteness of Gödel is not myste-
rious and complicated, but natural and inevitable» 10.

While the incompleteness of arithmetic is an abstract result of pure mathe-
matics, the study of the complexity of the programs is practical and applicable.
In computing, a direct application of the mathematical formalisms to the pro-
cessing of the data of the empirical sciences occurs.

Answering the first question about the objectivity of mathematical theories
and their independence of the subject who formulates them, we can say that
mathematics are both, objective and independent of the subject because they
are formal, and non objective but dependent of the subject who formulates them,
because they are incomplete and indecidable.

2. WHAT IS THE RELATIONSHIP BETWEEN THE MATHEMATICAL THEORIES

AND REALITY?

When answering the question on the objectivity of mathematical knowledge,
we have seen that the incompleteness and the undecidability of the mathemat-
ical systems encouraged the pluralism of these systems. The undecidability and
the plurality means that the mathematical systems cannot be made independ-
ent of the human mind which creates them. At this point, we can look towards
the world of empirical observations and ask ourselves: How does mathematics
help the human mind to draw a real image of the universe, just as the universe
is? I will refer to three questions which relate mathematics and reality: a) The
intelligibility of reality. b) The intelligibility of reality within a chaotic and proba-
bilistic order. c) The coexistence of reason and risk. The inevitable conflict.
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a) Intelligibility of reality. Empirical observation and mathematical theories.
We can say that, throughout the XX century, the ingenuous scientific realism
which established a simple, naïve relationship between the knower and the
known object entered a crisis. In the case of quantum physics, we know that the
empirical observations are not totally objective, they are affected by the obser-
ver. However, these quantum observations are expressed in mathematical theo-
ries which pretend, in some way, to be objective, that is to say, independent of
the subject who formulates them. Quantum physics is particularly intelligible
when we discover laws in it which we can express with mathematical rigour.
This is how modern science has understood it since its origins. Moreover, this
mathematical formulation was sought and achieved over recent centuries in
several fields of scientific knowledge. The intelligibility of reality is manifested
in the mathematical consistency of formal structures through which we inter-
pret the laws of empirical reality. Mathematics is applicable because it is capa-
ble of formally formulating the empirical laws which govern in nature, regard-
less of whether these are determinist or indeterminist, certain or probable.

Two visions of mathematics. There are two opposing views of mathematical
knowledge considered in itself. One of these considers mathematics to be a dis-
covery, that is to say, as a result of the description of worlds and realities which
exist in themselves and which the mathematician finds outside himself. This
view is often referred to as Platonism. The other view considers that mathe-
matics is pure creation. According to this second conception, mathematics is a
formal world created by mathematicians.

Two attitudes of mathematicians faced with reality. Among the mathematicians
there is an applied attitude which pretends to use mathematics as an instrument
to formally describe and explain the laws of the empirical world which we find in
the natural sciences. Another attitude considers mathematics to be a pure science,
an art through which the mathematician creates theorems and other mathema-
tical objects with no concern for its practical application; just as the musician
creates symphonies and other musical pieces, and the poet writes poetry.

Applied mathematics is in the origins. Within the historical origins of mathe-
matical activity, in the Egyptian and Mesopotamian cultures, we find mathe-
matical applications to specific problems such as the calculation of weights and
measures in commercial transactions, and the resolution of geometric problems
concerning the measurement of fields and surfaces. Modern physics encour-
aged the applied activity of mathematics through the use of functional analysis,
differential calculus, tensor calculus, etc. In the physics of the XX century ma-
thematics was an essential instrument for the formulation of the theory of re-
lativity, quantum mechanics and finally string theory. Above all, throughout the
XX century, new empirical knowledge which traditionally was not formulated
with mathematical rigour and, therefore, was not considered to be scientific
knowledge in the rigorous sense of modern science has been progressively for-
mulated mathematically. These new mathematical formulations have given rise
to the appearance of new rigorous sciences such as economics, biology, geolo-
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gy, etc., which use mathematical models and methods such as game theory or
optimisation. In recent decades, the capacity for the formalisation of empirical
observations has been developed substantially thanks to computing. Comput-
ing has also served to find practical applications for the totally abstract and for-
mal formulations of programming languages.

Alfred North Whitehead describes what the mathematical process of abstrac-
tion must have been like in its origins. The perception of numbers and geomet-
ric figures, as these are shown in reality, are the origin of formal mathematics.

«Suppose we project our imagination backwards through many thousands
of years… During a long period, groups of fishes will have been compared to each
other in respect to their multiplicity, and groups of days to each other. But the
first man who noticed the analogy between a group of seven fishes and a group
of seven days made a notable advance in the history of thought. He was the first
man who entertained a concept belonging to the science of pure mathematics» 11.

Mathematics has traditionally studied numbers and geometric figures. At the
present time, it studies all kinds of relationships more abstractly, including the
logical relationships between sets of premises and the conclusions which can
be inferred from these:

«Mathematics is thought moving in the sphere of complete abstraction from
any particular instance of what it is talking about. This view of mathematics is
so far from being obvious that we can easily assure ourselves that it is not, even
now, generally understood. For example, it is habitually thought that the certainty
of mathematics is a reason for the certainty of our geometrical knowledge of the
space of the physical real world. This is a delusion which has vitiated much phi-
losophy in the past, and some philosophy in the present» 12.

Applied mathematics describes the world which is shown to the scientist as
intelligible, thus, we can say that applied mathematics refers to the ontology of
reality. Empirical and technological science are possible because there is a cor-
respondence between the laws of the real world and formal mathematics. The
mathematical formulation of the laws of the real world make it possible to design
machines and instruments which permit the technological transformation of
reality. As it is abstract, formal mathematics is, in a way, independent of scien-
tific observation, but scientific observation and technological applications require
mathematical language in order to express their intelligibility and their capa-
city to control reality.

Consistency and empirical reality. The consistency of the formal systems
enables us to make predictions on the conduct of empirical reality. The consis-
tency of the formal systems applied to the explanation of the empirical reveals
the internal consistency of the empirical data and enables technological control
and prediction. A law in a consistent system serves to predict whether a certain
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event A will or will not occur. If the system does not behave consistently either
A or not A could occur. If a formal system is consistent, it is apt for technolo-
gical application, even though this application is not known. For example, non-
euclidean geometry was a consistent system with no important applications
before its use in the explanation of the theory of relativity.

b) The intelligibility of reality within a chaotic and probabilistic order. Howe-
ver, reality is reluctant to allow itself to be controlled. Reality resists when ma-
thematics attempts to enclose it within determinist orders. Until now, we have
seen that the intelligibility of mathematics is necessarily undetermined as a con-
sequence of the internal nature of formal systems. Now we take a step forward.
In the chaotic and probabilistic orders, we find that, in the empirical observa-
tion of reality indeterminacy appears together with determination, unpre-
dictability appears together with predictability.

In the probabilistic order, empirical events occur independently of each other,
and therefore each of these is unpredictable in relation to the others. Neverthe-
less, together they comply with the probabilistic laws which are represented
with a mathematical order.

We empirically observe systems with chaotic conduct which, however, have
an evolution which leads to the same ‘attractor’ from different starting points. The
structure of an attractor can be determined or be probabilistic. In the probabilis-
tic conduct of attractors, we find an order within disorder which in a certain way
increases the enigma of intelligibility in the world. We also observe events with
chaotic determinist conduct which are very sensitive to the initial conditions so
that a small variation in these produces a substantial change in the trajectories.
The trajectory of a chaotic system can converge toward an ‘attractor’ which may
be a relatively simple structure or it may converge towards a strange attractor with
a probabilistic structure. The attractors also represent order within disorder.

However, the probability does not only appear in the empirical world, the
internal laws of arithmetic itself have been shown to be random. For example,
there are statistical regularities which make it possible to forecast the average
distribution of prime numbers, while the position of each prime number in par-
ticular seems to be random. The probabilistic order appears both in the pure
formal sciences and in empirical observations.

The appearance of chaotic and probabilistic orders, which permit degrees of
liberty for particular events within the general laws, transforms the view of
rationality and the view of the world. The rationality of the empirical observa-
tions goes from being mechanical to being undetermined and probabilistic.

c) Coexistence of reason and risk. The inevitable conflict. Remembering
Galileo, we can say that nature is written in a rational language. However, unlike
Galileo, we do not reduce this language to triangles, circumferences and other
geometric figures. We can say that the conception which science has of the world
has evolved because the scientific axioms have lost their character of unique,
definitive explanations. This has meant that the value of scientific propositions
has become more relative and their importance is more conditioned by the value
of their technological application.
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At the present time, science is characterised by a grand capacity to create
diverse models which describe different and autonomous aspects of the world,
and diverse scientific communities base their theories on these models. The
scientific communities are autonomous of each other. Cosmology bases its theo-
ries on the origin and development of the world in diverse models of the Uni-
verse. Microphysics develops models which describe the ultimate constitution
of matter. Biology applies its models to describe other dimensions of the world.
In scientific psychology, we find models which describe the conduct and the
nature of men and women. The very history of the different scientific models is
scientifically modelled.

Throughout the XX century, substantial efforts were made to create formal
languages. The formal language converts propositions into objects which can
be handled by computers and has approximated human thought to that of com-
puters. On February 20, 1947, Turing gave a lecture in the London Mathemati-
cal Society where he asked to what point it was, in principle, possible that a
computer might simulate human activity. This led him to proposing the possi-
bility of a computer which was programmed to learn and which would be allowed
to commit errors. «There are several theorems which state almost literally that
[…] if a machine is expected to be infallible, then it cannot be intelligent […].
However, these theorems do not say anything about how much intelligence a
machine which does not pretend to be infallible must exhibit» 13. Given that we
cannot deduce all the propositions of a system of axioms which can be manip-
ulated, it is necessary to try out several propositions and discard them if they
do not serve. Turing concluded his lecture with a call for ‘fair play with com-
puters’, and these should not be expected to be more infallible than human
beings. He also suggested that chess could be a suitable exercise to begin with 14.

The fair play which Turing asked for consists of accepting the risk of mak-
ing certain propositions which, even in the simple case of the game of chess, are
not deduced from other accepted ones. There is no sufficiently complex formal
game which does not require risk.

Leibniz proposed that, in order to terminate conflicts, when two persons were
involved in litigation, they should define the concepts within a formal system of
calculation. The parties involved in discussion had simply to sit down and sim-
ply make calculations. Leibniz thought that all conflicts could be resolved in this
way. Nowadays, we see Leibniz’s proposal as naive.

The risk of committing errors. At the same time that the meta-mathematical
attempt to base formal mathematics from formal mathematics itself has been
intellectually very fruitful, it has also shown that formal-mathematical thought
is necessarily open to the risk of committing errors. I do not refer to the errors
which originate in sensorial perception, or in the measuring devices. I refer to
the opening up to the risk which is intrinsic to the formal systems themselves
and which is deduced from the undecidability of these systems.
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3. IS IT RATIONAL TO ASSUME THE RISK OF COMMITTING ERRORS?

If all the situations involving a possible choice are predetermined, free will is
impossible. For free will to exist, there must be indeterminacy and risk in some
way. Science discovers more and more environments in which new determina-
tions which were unknown before appear. The progress of the study of genes
and the influence of the environment on conduct mean that we currently con-
sider actions as predetermined and before we had considered these to be free.
Therefore, it is legitimate to ask ourselves whether all reality will be determined
and there is no possibility of free will.

Indeterminacy in the formal sciences. The innovation brought about by the
theorems of undecidability and incompleteness is that we are faced with risk in
the very environment of formal sciences, where we can exercise most control
over our knowledge. Formal logic permits a total control of knowledge, insofar
as it is based on the execution of instructions which do not permit any kind of
unprogrammed initiative by the person who executes these. However, we know
that any computer, or any human mind which wants to have the capacity to for-
mally express all its thoughts, would have to assume the risk of committing
errors. Precisely because this risk of committing errors is based on the very
nature of the formal processes, there is no formal explanation which tells us
how we have to assume this risk.

Meta-rationality and consistency. Given that the formal sciences cannot avoid
this risk, we are now led to ask about the rational presuppositions which justi-
fy the situations of indeterminacy and risk where we are taken by our current
concept of formal science. Mathematics has renounced being complete and has
also renounced that all its important systems are decidable. Consistency is a
meta-rational pretension. Although the systems are plural, each one of these
must have internal consistency and meta-reflection about the different systems
need to be consistent. The formal systems may be different and independent,
and use different logic, but there is a pretension that, in a way, is absolute and
common to all the formal systems: its internal consistency and the consistency
of their co-existence. The formal systems are justified by their internal consis-
tency, and their plurality is justified by the consistency of their co-existence.
There is no possible alternative to consistency. If we state A and not A at the
same time and exactly in the same sense and referring exactly to the same rea-
lity, we have lost rationality. Consistency is a value of rationality which cannot
be renounced. We can prove the consistency of a system in particular and there
may be systems whose consistency we cannot prove, but the consistency of the
systems is a presupposition which we cannot renounce.

Mathematics and consistency. It would be very important to be able to proof
that mathematics is consistent. In 1936, Gerhard Gentzen (1909-1945), using trans-
finite induction, therefore, from outside arithmetic proved that arithmetic is con-
sistent. However, as stated by E. B. Davies «If one proves the consistency of arith-
metic by invoking some other, richer, formal system, one achieves nothing unless
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one considers that the consistency of that new system is less capable of being doub-
ted» 15. It is normal that the consistency of a more complex system than arithmetic
is more questionable than the consistency of arithmetic. What would occur if arith-
metic were inconsistent? Arithmetic is the most basic formal system of mathe-
matics. If arithmetic were inconsistent, the arithmetical reasoning would only be
valid so long as we do not find any inconsistencies in it. Thus, the value of arith-
metical reasoning would cease to have absolute value and have only local value, it
would have value only in its consistent subsystems. The mathematical derivations
would continue to be valid in order to establish equivalencies between formula-
tions, equations and theories, and would also serve to predict properties of com-
puter programs. Mathematics would maintain its current value on the condition
that it is limited to mathematical arguments and computer processes within the
limits in which the systems, or parts of the systems, maintain their consistency.

4. WHAT RELATIONSHIP IS THERE THEN BETWEEN THE FORMAL SCIENCES, 
METAPHYSICS AND THEOLOGY?

Traditionally metaphysics is the discipline which reflects on the ultimate ques-
tions about reality. Metaphysics intends to reflect on ultimate questions for glo-
bal reality with objectivity, that is to say, regardless of the subject who is reflect-
ing. The meta-rational justification of the formal sciences we seek is metaphysical
because it intends to be objective and because we use it to ask ourselves about
the ultimate rational justification of our formal thought.

The human mind needs to find sufficient reasons which consistently explain its
experience of the real world. When the empirical sciences use mathematics as a
means of expression, they use its capacity to express data objectively and estab-
lish causal relationships between this data in order to consistently explain their
experience. The consistency of the explanation is a presupposition which cannot
be renounced, in the sense that a contradiction cannot appear in the explanation.

However, mathematics applied to the formalisation of reality cannot provide a
sufficient reason for all experiences. There are two facts which show the intrin-
sic limitation to the mathematical explanation: a) At the same time as mathe-
matics gives a mechanical and determinist explanation, it shows the insuffi-
ciency of this explanation. b) Nor can mathematics give a reason why it is a
language which contacts reality. Is mathematics a mask which disfigures the
real world? How does mathematics access the real world? We do not have a for-
mal explanation which explains how mathematics accesses the real world. In
the same way as we presuppose meta-rationally that the systems are consistent
while not otherwise proved, we also need to presuppose that the formal systems
describe laws which occur in the real world.
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Theology reflects on God as the ultimate foundation of reality. Theological
reflection cannot avoid its relationship with metaphysical reflection as both ask
about the ultimate questions of reality. Different ways of understanding theo-
logical reflection correspond to different metaphysical conceptions of reality.
Leibniz had a deterministic conception of rationality and, consequently, he had
a deterministic vision of theology. At the present time, we do not have a deter-
ministic vision of rationality and this also influences theological reflection. More-
over, if it is considered that the principle of consistency of the systems is a meta-
rational principle which cannot be renounced, theological theories need
necessarily to co-exist consistently with scientific theories.

CONCLUSION

Mathematics is a historical science which evolves and is developed in the same
way as the other sciences. A feature of mathematics is that it has the maximum
capacity known to express its results objectively through a formal language and
precise laws of deduction. In fact, historically mathematics has progressively
developed its capacity to objectively express its results. Thus, mathematics is the
most precise and objective instrument we have in order to express our knowl-
edge of the real world.

The development of mathematics throughout the XX century proved that
the results of mathematics cannot be complete and, therefore, they are open to
several possibilities which cannot be predetermined in all cases. Another source
of indeterminacy lies in the laws of the real world which have a probabilistic
and chaotic nature. This means that mathematical activity is, of necessity, faced
with the risk of choosing from several possibilities.

The opening up of mathematics to risk is not an opening up to irrationality.
The fact that we are open to risk does not prevent us from asking about the ration-
ality of this situation. On asking meta-rationally for the permanence of global
rationality, we verify that the consistency of the systems, as the exclusion of inter-
nal contradiction and the exclusion of mutual contradiction in their co-existence,
is a rational value which must continue. The consistency of the systems may or
may not be proved formally, but this is a presupposition which we cannot renounce.

The consistency of the systems acquires metaphysical value as the ultimate
basis of rational thought, and, of necessity, it also has theological value. All theo-
logical theories need to be consistent with the scientific theories. The dialogue
between science and religion will, above all, be based on consistency, as the exclu-
sion of contradiction, between the propositions of science about the reality and
those of theology.
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