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Abstract: Traditional epistemological models classify knowledge into separate disciplines with diffe-
rent objects of study and specific techniques, with some frameworks even proposing hierarchies (such 
as Comte’s). According to thinkers such as John Holland or Teilhard de Chardin, the advancement 
of science involves the convergence of disciplines. This proposed convergence can be studied in a 
number of ways, such as how works impact research outside a specific area (citation networks) or 
how authors collaborate with other researchers in different fields (collaboration networks). While these 
studies are delivering significant new insights, they cannot easily show the convergence of different 
topics within a body of knowledge. This paper attempts to address this question in a quantitative 
manner, searching for evidence that supports the idea of convergence in the content of the sciences 
themselves (that is, whether the sciences are dealing with increasingly the same topics). We use Latent 
Dirichlet Analysis (LDA), a technique that is able to analyze texts and estimate the relative contributions 
of the topics that were used to generate them. We apply this tool to the corpus of the Santa Fe Insti-
tute (SFI) working papers, which spans research on Complexity Science from 1989 to 2015. We then 
analyze the relatedness of the different research areas, the rise and demise of these sub-disciplines 
over time and, more broadly, the convergence of the research body as a whole. Combining the topic 
structure obtained from the collected publication history of the SFI community with techniques to infer 
hierarchy and clustering, we reconstruct a picture of a dynamic community which experiences trends, 
periodically recurring topics, and shifts in the closeness of scholarship over time. We find that there is 
support for convergence, and that the application of quantitative methods such as LDA to the study 
of knowledge can provide valuable insights that can help researchers navigate the increasingly wide 
literature as well as identifying potentially fruitful areas for research collaboration.
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¿Convergen las diferentes disciplinas de conocimiento?  
evidencia cuantitativa

Resumen: Los modelos epistemológicos tradicionales clasifican el conocimiento en disciplinas 
separadas con objetos de estudio distintos y técnicas específicas, incluso proponiendo esquemas 
jerárquicos (por ejemplo, Comte). Según pensadores como John Holland o Teilhard de Chardin, 
el avance de la ciencia implica una convergencia entre sus disciplinas. Esta convergencia puede 
estudiarse de maneras distintas, como el impacto de diferentes autores fuera de su equipo (redes de 
citación) o la manera en la que colaboran (redes de coautoría). Aunque estos estudios están generando 
ideas interesantes, no son capaces de mostrar la convergencia de los distintos temas que se tratan en 
un cuerpo de trabajos. Este artículo intenta estudiar esta pregunta desde un punto de vista cuantitativo, 
buscando evidencias que apoyen la idea de convergencia en el contenido de las ciencias en sí mismas 
(es decir, si las ciencias se ocupan de temas cada vez más cercanos entre ellos). Empleamos Latent 
Dirichlet Analysis (LDA), una técnica que analiza textos y estima las contribuciones relativas de los 
temas que los generan (estos temas se definen como distribuciones de palabras). Aplicamos esta 
técnica al corpus de artículos publicados por el Instituto de Santa Fe (Santa Fe Institute, SFI), que 
describe trabajos relacionados con las Ciencias de la Complejidad entre 1989 y 2015. Analizamos 
la cercanía entre las diferentes áreas, la aparición y desaparición de temas de investigación y, en 
general, la posible convergencia entre disciplinas. Combinando la estructura obtenida de la historia 
de las publicaciones de SFI con técnicas de inferencia de jerarquía y clustering, reconstruimos la 
perspectiva de una comunidad científica dinámica que experimenta tendencias, temas recurrentes y 
cambios en la cercanía de las diferentes disciplinas. Nuestros resultados muestran que hay evidencias 
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de convergencia y que la aplicación de métodos cuantitativos puede proporcionar nuevos elementos 
de comprensión que ayuden a los investigadores a estructurar una literatura científica cada vez más 
amplia y compleja, así como a identificar áreas potenciales para nuevas colaboraciones.

Palabras clave: convergencia, modelado de temas, latent dirichlet allocation, sistemas complejos 
adaptativos.

1.  Introduction

Traditional epistemological models classify knowledge in separate disciplines with 
different objects of study and specific techniques. Some of these classifications even 
assign hierarchical levels to each branch of knowledge, with Comte’s Theory of Science 
providing one of the most well recognized frameworks (Comte, 1868). For Comte, all 
known disciplines could be arranged into a continuous from mathematics to astronomy, 
physics, chemistry, biology and, lastly, sociology. The order in which Comte ordered the 
sciences reflected increasing complexity and generality of the subject, which contrasted 
with a decreasing complexity of the instruments applied by each discipline.

However, the thesis of the unity of science has long been recognized. For example, 
Oppenheim proposed the unity of science as a working hypothesis (Oppenheim & 
Putnam, 1958) and von Bertalanffy set out a more holistic framework for unifying 
natural and social sciences in his General Systems Theory (Bertalanffy, 1968).

From this viewpoint, the multiplicity of disciplines provides different perspectives 
and frameworks for understanding and interpreting observed phenomena. However, 
the advancement of science then necessarily entails some convergence of its different 
fields. Such convergence has been proposed by, among others, John Holland and 
Teilhard de Chardin. John Holland was one of the main contributors to the field of 
complexity research, and, in particular, the definition of complex adaptive systems 
and their properties (Holland, 2012). A Complex Adaptive System (CAS) is defined as a 
system that has a large numbers of components, often called «agents», which interact 
and adapt or learn. A typical CAS has properties such as self-similarity, complexity, 
emergence and self-organization. Science as a whole can be viewed as a CAS, where the 
different disciplines evolve together to create a common, emerging holistic view.

This idea of convergence in the scientific disciplines also resonates with the ideas of 
Teilhard de Chardin (De Chardin & Wall, 1965); knowledge first starts in the divergence 
of the plurality of disciplines, but they should then start to converge into the final, single 
truth. Henry Kenny, who was himself a Teilhardian scholar, described the convergence of 
several scientific disciplines into one synthesis, evolution, in the following words: «Other 
evidence for evolution from comparative anatomy, genetics, physiology, biochemistry, 
biogeography, taxonomy and embryology, together with the currently available 
preponderance of paleontological evidence constitutes an evidential convergence that 
literally renders any other explanation besides evolution as almost unthinkable». The 
latter can be understood as one example of convergence in the sciences, with topic 
evolution bringing together comparative anatomy, genetics, physiology or biochemistry.

Further examples of this kind of phenomenon were given, more recently, by E.O. 
Wilson and his consilience theory (Wilson & Ros, 1999). Consilience is defined as an 
agreement between the approaches to a topic of different academic subjects, especially 
in science and the humanities. Consilience is therefore a particular case of convergence, 
where the truth about one topic is revealed through a multiplicity of paths. We (the 
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authors) understand convergence in the context of knowledge in a more general way. 
All topics are subjected to consilience as the scope of each of the sciences grows to also 
encompass the others, and extends the methods it uses to incorporate those that have 
been proposed and applied in the other disciplines.

E.O. Wilson identifies in his work many recent examples of consilience, such as 
the unification of Darwin’s evolution with genetics, the unification of forces in modern 
physics and the unification of Brownian motion and atomic theory. Although attractive 
and powerful, this evidence is qualitative in nature. Our research proposal is to study 
the hypothesis of convergence in the sciences in a quantitative manner.

Trends and patterns within scientific knowledge have been analyzed quantitatively 
previously. For instance, citation networks, which represent the citation of one document 
by another, have been used to understand how new knowledge builds on existing 
literature (Leicht, Clarkson, Shedden, & Newman, 2007; Rice, Borgman, & Reeves, 
1988). Similarly, the study of co-authorship networks, which depict the joint work or 
collaboration between authors, has revealed a number of habits and collaboration 
patterns within academic communities (Grossman, 2002; Ioannidis, 2008; Newman, 
2001; Newman, 2001; Newman, 2001). Rather than examining knowledge convergence 
in terms of «who is citing who», or «who is working with who», we instead seek to 
examine the underlying knowledge content directly. Using an approach known as 
topic modelling, we investigate how particular topics arise and evolve in terms of their 
thematic content. Specifically, we seek to measure the convergence of topics across 
disciplines, that is, to what extent different disciplines are referring to the same topics 
and using the same concepts. 

Topic modeling is a statistical technique for identifying particular topics in a corpus 
of documents (Blei, Ng, & Jordan, 2003; Blei, 2012). Intuitively, the method is based on 
two key premises. Firstly, abstract topics can be represented in terms of a set of words that 
frequently appear together. For example, a topic like «gardening», might be represented 
in terms of words like «flower», «soil», and «seed» while a topic like «cricket» might be 
represented in terms of words like «bat», «ball», and «runs». Secondly, if a document 
discusses a particular topic, one might expect it to contain more of certain words and 
less of others. In general, documents are likely to encompass multiple topics. One of 
the advantages of topic modeling is that it uses the relative frequency of topic words 
in the document to provide a quantitative estimate of the extent to which a document 
focuses on one topic relative to another. For example, if a document primarily discusses 
gardening but also talks about cricket, we would expect the document to contain many 
more «gardening words» than «cricket words».

In order to study the convergence of knowledge across different sub-disciplines, we 
focus on an inherently interdisciplinary research area, Complexity Science. Unlike most 
research disciplines, Complexity Science is not based on a single theory or framework. 
Rather, it encompasses theories from a wide variety of disciplines and employs a 
number of approaches to study the aforementioned properties of complex adaptive 
systems (Mitchell, 1992). While science is one exemplification of a complex adaptive 
system, there are many other diverse and wide-reaching examples, such as economies 
(in which economic agents interact in markets), ecosystems (in which species interact 
with each other and their environment), traffic (in which drivers respond to the position 
and speed of other drivers on the road) and the internet, (in which humans interact in 
cyberspace with both humans and computers). The breadth in the fields contributing to 
Complexity Science (including computer science, biology, mathematics, and physics), 
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and the diversity of its applications, makes the research area a particularly interesting 
body of knowledge to examine. 

To analyze key patterns and knowledge convergence within the Complexity Science 
literature, we focus on research output from the Santa Fe Institute. The Santa Fe Institute 
is a research organization dedicated to furthering research in Complexity Science and 
has been instrumental to the ongoing development of the field since the mid-1980s. 
In this paper, we study the entire corpus of Santa Fe Institute working papers, which 
comprise approximately 1600 online research documents published from 1989 to mid-
2015. 

By analyzing the frequency of words within each document and across the corpus 
as a whole, we quantitatively identify 20 topics corresponding to key subject areas 
represented in the literature. We first examine each of the 20 topics in terms of the 
overlap or proximity in knowledge content relative to all the other topics. We find that 
some topics are quite close to each other, while other topics comprise content that 
is quite different. We then investigate the popularity of individual topics (how often 
they are used) within the literature and how popularity changes over time. Finally, we 
quantify the proximity between documents at different time periods and find evidence 
for knowledge convergence within the corpus.

2.  Topic Modelling using Latent Dirichlet Allocation

To extract the thematic content underlying the documents in the SFI corpus, we 
applied Latent Dirichlet Allocation (LDA), an unsupervised, generative framework 
to discover latent «topics» or groupings of semantically related words (Blei et al., 
2003). Within this framework, each topic defines a unique probability distribution (a 
multinomial) over all words in a vocabulary, and each document contains words drawn 
from a mixture or probability distribution over these topics. The generative story for 
producing documents under LDA is as follows:

For each document,
1.	 Draw a distribution over topics
2.	 For each word being added to the document,

a.	 Select a topic from the document’s distribution over topics
b.	 Select a word, drawn from the selected topic (a distribution over words)

The «latent» aspect of LDA stems from the fact that we do not know a priori what 
the topic distributions are for each document or what the topics themselves are. These 
elements are expressed as latent variables within the model and are inferred from data, 
using statistical inference techniques.

To perform LDA, we used MALLET, a topic modeling toolkit, which includes 
implementations of the LDA algorithm as well as several other popular topic models 
and utilities for preprocessing text files (McCallum, 2002). Prior to running MALLET, we 
preprocessed the corpus using standard approaches from natural language processing. 
In particular, we applied lemmatization (converting words to their respective lemmas — 
e.g. «converting» to «convert») and removed «stop words», words that appear frequently 
in the English language but provide little information for determining the thematic 
content of a document — e.g. «a», «the». 
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In the following sections, we use LDA to analyze the SFI corpus in to two ways. 
First, we analyze the topics themselves to determine what concepts are discussed in 
this literature. Second, we view the corpus as a time series and examine how the topics’ 
popularity changes over time. This analysis corresponds to Holland’s concept of CAS 
flows. In the following sections we describe and present the results of several prelimi-
nary analyses.

3.  Static Topic Proximity Dendrogram

In our study of the SFI corpus, we used LDA to obtain document-topic probability 
distributions, «topic distributions» hereafter, which describe the thematic content 
underlying each document. As a first analysis, we investigated the similarities between 
the topics themselves by quantifying similarities in their usage patterns. When applied 
to the SFI corpus, LDA identifies the following topics (i.e. distributions of words). The 
table below shows these topics and their most frequent words.

  Topic Most used words

1 Molecular Biology structure sequence landscape gamma space secondary base neutral

2 Quantitative Finance market price order trader good stock money equilibrium

3 Particle Physics energy system phys function spin temperature entropy state

4 Dynamical Systems model system dynamic equation time point parameter state

5 Genetics gene protein sequence genome expression interaction evolution acid

6 Immunology cell model antibody antigen immune rate clone affinity

7 Information Theory state process information entropy machine complexity causal measure

8 Mathematics function theorem proof case space matrix lemma problem

9 Game Theory agent game strategy player equilibrium action model utility

10 Cellular Automata gamma rule automaton state lattice particle site figure

11 Complex Systems system theory language science complex structure process object

12 Early Civilisations population area site society patch resource university press

13 Political Theory social company system market network party control political

14 Statistics data model distribution time result series size number

15 Genetic Algorithms fitness population genetic mutation landscape selection function generation

16 Networks network graph node number degree vertex random edge

17 Chemistry specie reaction extinction food evolution model diversity rate

18
Social Norms and  
Cooperation

group individual social behavior cost model level member

19
Technology, Cities 
and Growth

firm technology city economic cost production economy income

20 Learning Algorithms algorithm problem system learning computer function input time

Table 1. TOPICS and their most used words

We used Jensen-Shannon Divergence (JSD, discussed further in the appendix) to 
compare topics’ usage across the corpus. JSD is used extensively in probability theory 
and in natural language processing as a measure of similarity between two probability 
distributions. For our purposes, JSD allows us to quantify the relatedness of two topics 
by comparing how their usage is distributed throughout the corpus. The idea is that if, 
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across all documents, two given topics are always allocated a similar relative weight 
then they must be related (when one appears, the other appears as well with a certain 
dominance). That is, intuitively, we understand two topics to be related when the docu-
ments that deal with one topic also tend to deal with the other.

We applied this to the SFI corpus and visualized the analysis in a dendrogram, shown 
in Fig. 1. The dendrogram shows the hierarchical clustering of topics (Ward Jr, 1963), 
implemented in Matlab, where topics that are closer merge earlier in the diagram, and 
topics that are further apart merge later. This visual representation is useful to unders-
tand the relationships among the topics in an easily interpretable way.

Figure 1. Topic Proximity Dendrogram

As can be seen, the topics that appear closer in the corpus and so merge the earliest 
in the dendrogram are Early Civilizations (12), Political Theory (13) and Technology, 
Cities and Growth (19). In this case we have three topics in the social sciences that relate 
to different forms of societal organization. 

If we continue analyzing the dendrogram, we arrive at the merge of topics that deal 
with biology and economy, with genetic algorithms being responsible for this merge: 
Biochemistry (17), Social Norms and Cooperation (18), Genetics (5), Game Theory (9), 
Molecular Biology (1) and Genetic Algorithms (15).

At the extreme of the spectrum, we can find the topics Statistics (14) and Mathematics 
(8), which are the latest to be incorporated to the dendrogram. This means that, within 
the range of topics, these two represent subjects that tend to appear in an isolated way 
or together with a wide variety of other topics so that no specific connections can be 
made. This would be typical of topics that can be considered representative of tools 
(in this case, mathematical tools). These topics would appear in papers that carry out 
theoretical developments or that apply them to a range of other problems with not one 
single application being dominant over the others.



PENSAMIENTO, vol. 71 (2015), núm. 269� pp. 1383-1399

	 S. Lumbreras, P. Mealy, C. Verzijl, S. F. Way, QUANTIFYING CONVERGENCE IN THE SCIENCES� 1389

4.  Topic Dynamics 

In addition to analyzing the proximity between topics, we also investigated how 
individual topics differ in relative prevalence (or popularity) and how this changes 
over time. Our measure of relative prevalence is derived from the normalized topic 
probability distributions across each document. By construction, each document will 
have a non-negative probability across all 20 topics. However, topics that are more 
strongly represented will have a higher probability value than topics that are less 
represented in the document. 

The five panels below show the normalized topic probability distributions across all 
documents in the SFI corpus. We have ordered each document in chronological order 
according to its date. While the documents in the SFI corpus span the time period from 
1989 to 2015, documents are not uniformly distributed across time. Consequently, ‘time’ 
represented along the x-axis in Figure 2 and Figure 3 is not a uniform distribution of 
time, but a uniform distribution of chronologically ordered publications. The y-axis 
categories in each of the panels in Figure 2 correspond to each of the 20 topics analyzed 
in the corpus and the z-axis represents the topic distribution value.

We have ordered topic categories along the y-axis according to their relative 
prevalence over the entire corpus period. That is, the first few topics listed (such as 
Statistics and Complex Systems) are topics that consistently have high topic probability 
values in the majority of documents over time. In contrast, the last topics listed (Early 
Civilizations and Immunology) only tend to have high topic probability values over a 
few documents in the corpus. 

In considering why some topics might be more prevalent than others, it is helpful 
to examine some of the words within each topic. The Statistics topic consists of words 
such as ‘data’, ‘model’, ‘distribution’, ‘estimate’, ‘probability’ and ‘analysis’. The Complex 
Systems topic comprises words such as ‘theory’, ‘complex’, ‘process’, ‘world’, ‘evolution’ 
and ‘nature’. As these words tend to be of quite a general nature, it is not surprising 
that the topics tend to be more highly represented in a large number of documents. In 
contrast, the Early Civilizations topic consists of words such as ‘habitat’, ‘settlement’, 
‘social’, ‘household’, ‘resource’ and ‘population’, while the Immunology topic comprises 
words including ‘antibody’, ‘infection, ‘immune’, ‘virus’ and ‘tumor’. These words are 
likely to be used in much more specific contexts, which sheds light on why these topics 
are represented much more sparsely within the corpus. 

The five panels of Fig. 2 also give an indication of how topics change in relative 
prevalence over the corpus time-span. While the relative prevalence of some topics (like 
Statistics, Complex Systems and Dynamical Systems) remains reasonably constant over 
time, other topics are shown to experience a marked change. 
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Figure 2. Topic dynamics for top-20 topics in the corpus



PENSAMIENTO, vol. 71 (2015), núm. 269� pp. 1383-1399

	 S. Lumbreras, P. Mealy, C. Verzijl, S. F. Way, QUANTIFYING CONVERGENCE IN THE SCIENCES� 1391

In Fig. 3, we show two distinct examples of the ‘rise’ and ‘demise’ of topic prevalence. 
The first panel shows the relative prevalence of the Network Science topic over the 
corpus time-span. A substantial increase in topic prevalence can be seen after the first 
600 chronologically ordered documents, which corresponds to the year 1999. This 
striking increase in topic prevalence around this time is not surprising, as it corresponds 
to the period just after Watts and Strogatz (Watts & Strogatz, 1998) published their 
work on the ‘small-world’ network and sparked a more mathematical analysis of social 
networks. With new interest in small world networks rekindled, the year 1999 saw a 
number of important papers published, such as Barabási and Albert’s papers (Barabasi 
& Albert, 1999) on scaling properties in many real world networks like the world-wide 
web. Since that period, network science has evidently remained a significantly prevalent 
topic within the SFI corpus.

Figure 2. Continued
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Figure 3. Relative trends in genetic algorithms and network science.

The second panel in Fig. 3 shows quite a different trend. While the genetic algorithms 
topic was relatively prevalent within the SFI corpus documents in earlier years (spanning 
the years 1989-1999), the turn of the century appears to correspond to a decrease in 
interest in this topic. On the one hand, this trend may be interpreted as being somewhat 
surprising, particularly in light of SFI’s strong historical involvement with Holland’s 
development of genetic algorithms in the 1970s. On the other hand, it might indicate 
a potential tendency for SFI research to be targeted towards relatively new ideas, 
techniques and research areas. Genetic algorithms were considered ‘frontier’ research 
during the 1970’s-1990’s, particularly as improvements in computers expanded both 
their power and potential applications. However, with new research areas like statistical 
machine learning inevitably «crowding out» researcher time devoted to existing topics, 
older research areas may become less prevalent in present day publications. 

5.  Document Relationships as Heatmaps

In preceding sections we discussed the topic hierarchy derived from an LDA analysis 
by clustering topics using the Jensen-Shannon divergence as a measure of distance. We 
now apply the same techniques to the structure of the corpus as a whole, over time, by 
studying the relationships among documents. This is essentially an implementation of 
the CAS flows concept noted previously. To this end, we again take the topic distributions 
obtained by LDA (Blei et al., 2003) as implemented in Mallet (McCallum, 2002) for each 
document and likewise calculate Jensen-Shannon divergences (Endres & Schindelin, 
2003; Kullback & Leibler, 1951; Lin, 1991) as a measure of the pairwise distances. We 
store these in a distance matrix , which we use in two steps of subsequent analysis.

First, we visualize the distance-based hierarchy reconstructed using UPGMA 
(Unweighted-Pair Group Method with Arithmetic Mean, one of the simplest and most 
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widely used metrics (Sokal, 1958)) as implemented in scipy.cluster.hierarchy in the SciPy 
library (Jones, Oliphant, & Peterson, 2001).1 A result of this, with color-coded clusters 
is shown in Fig. 4, illustrating a part of the clustering of all documents in the 2010-2015 
time window. To better understand of the resulting hierarchies, we also algorithmically 
label the documents in the tree by creating a string from an ordered list of the top 20 
words in the top topic as the label for each document, which can be compared to the 
titles and abstracts of the respective papers. Second, to investigate the structure of the 
publications by the SFI community and its evolution over time, this clustering is used 
to permute the columns and rows of the distance matrix, which we then visualize as a 
heatmap of distances.

Figure 4. Partial dendrogram of the 2010-2015 block of documents in the corpus showing  
a cluster of documents with mathematical terms related to networks (black), documents related to 

neural networks and machine learning (green) and a larger block corresponding  
to information theory and theory of computation (red).

The two can be conveniently shown together in a clustered heatmap visualization, 
which makes the inferred hierarchy explicit, as in Fig. 5, shown for the full corpus 
(«sfi_doc»). We also characterize the distribution by a histogram of the JSD measure, 
which is centered at 0.55 (scale from 0 to ln 2), with a spread of 0.10 and a heavy tail 
characterized by excess kurtosis =2.79.

1  This is a reasonable fallback clustering approach, but the content of the analysis is not too 
sensitive to the algorithm used, even when clustering is done by other means, such as e.g. Ward’s 
algorithm (Ward Jr, 1963).
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Figure 5. The clustered heatmap shows the large-scale structure of the full corpus, with some 
banding visible and some block-structure on the diagonal corresponding to the cores of clusters,  
and the Histogram of the JSD distribution with sample statistics for the full («sfi_doc») corpus.

The ordering of the documents is again a rough proxy for a time-axis, and so to study 
changes over time we bin the documents into 5-year groups. An initial impression of the 
time-dependence can be obtained by creating groups with independent topic models 
(one for each group), but a more structured result is found by training a single topic 
model on the full corpus and using it to infer topic and word distributions for each 
group. Following this procedure, we have tried k=20, 50 and 100 topics, finding 50 to be 
a reasonable balance between high-level summary topics and very fine-grained detail.2

Despite being a fairly coarse-grained method with respect to time, applying this 
technique to the SFI corpus leads to two key observations. First, that we see structure, 
and its evolution of over time. Second that this directly reflects the changing focus of the 
community over time discussed in the preceding section. Note that the rough approach 
could straightforwardly be improved by using more rigorous techniques explicitly 
modeling time-dependence (Blei & Lafferty, 2006; Blei, Wang, & Heckerman, 2008).

The results are illustrated in Fig. 6 for three 5-year groups of documents, and suggest 
a community in change. The overall color-intensity speaks to the average distance 
between topics, which appears to slowly decrease over time. However, this decrease 
seems to be driven not by a homogenous reduction in distance, but by the appearance 
of low-distance block structure (larger, lighter blocks) in the final 2010-2015 block, 
indicating that a group of more closely linked research appears. In contrast, what we do 
not find are strong indications of are isolated sub-communities, which would show up 
as (side-) bands which are internally close (a light block-diagonal square) and otherwise 
well-separated from the rest of the community (dark bands in relation to documents 
outside the block). 

2  With 50 topics we obtain 46 clusters using the default clustering threshold of linkages below 
0.7 max(linkage)



PENSAMIENTO, vol. 71 (2015), núm. 269� pp. 1383-1399

	 S. Lumbreras, P. Mealy, C. Verzijl, S. F. Way, QUANTIFYING CONVERGENCE IN THE SCIENCES� 1395

This visualization of the qualitative trends suggests further exploration by estima-
ting the distance distribution as a function of time-blocks in Fig. 7. This also yields a 
clearer picture of deviations from the averaged behavior of Fig 8, as the groups contain 
unequal numbers of documents.

Figure 6. Clustered heatmaps for different blocks, showing shift to lower average distance  
and emergence of more block structure in the later cluster. 

Figure 7. Distributions from Fig. 6 over time, showing a slight broadening and shift to lower mean 
for the final 5-year block, and increased clustering in the small-distance tail (lower excess kurtosis).

Overall, we find that the blocks, like the full corpus, have a negatively-skewed 
distribution peaked at the high-end of the distance distribution, and a spread () of 
roughly 0.11. However, the mean has been shifting very slowly downward over time (also 
relative to the document-weighted average). To illustrate the clustering at low distances 
we use not the skew,3 but the excess kurtosis . This is a measure of the ‘heaviness’ of the 

3  Skew, the 3rd moment, is biased by the upper bound of the JSD.
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tail, where the decrease in with time corresponds to a heavier tail: i.e. increasingly many 
documents characterized by small pairwise distances, as the bottom pane

Figure 8. Trends in topic distributions over time.

The clusters associated with this development (highlighted in Figure 7) correspond to 
mathematical terms related to networks (black), documents related to neural networks 
and machine learning (green) and a larger block corresponding to information theory 
and theory of computation (red), also noted in Fig. 4.

The ease with which we can make this dynamic visually intuitive suggests that these 
techniques are useful for developing insight into the community structure underlying 
developments in complexity sciences research at SFI, but also into other communities 
of knowledge. In faster-moving fields, more rigorous treatment of a consistent topic 
hierarchy that evolves over time (Blei et al., 2010), together with modeling the time-
dependence of the topics (Blei & Lafferty, 2006) should help to significantly strengthen 
the initial exploration discussed here.

6.  Discussion

In this research, we attempted to quantify whether there is convergence in the 
contents of the sciences, with different disciplines dealing with increasingly the same 
topics. The results of our analysis are relevant for the study of knowledge on two levels, 
addressing knowledge generation within a particular community, and presenting a 
method for the quantified study of hypotheses about the underlying process by which 
this occurs more broadly. 

First, we focus specifically on the community of research on complexity science 
embodied by the corpus of working papers from the Santa Fe Institute. We have found, 
by means of a scalable analytic technique, that the picture of a dynamic interdisciplinary 
community emerges, in which we see evidence both for shifting focus (e.g. away from 
early emphases on genetic algorithms towards applications and techniques like network 
science which draw together multiple techniques), and for some measure of convergence 
in the research. The latter is evidenced by the clustering of documents in the fat tail of 
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the distance distributions, which reflect a period in which more closely-linked work 
is being undertaken than in other periods. We remark, however, that this does not yet 
reflect a convergence of fields. Rather, it suggests the convergence of work within fields, 
as reflected by the topics of focus in the community and the words used to express them.

Nonetheless, as a trend is evident it would be interesting to revisit the community 
periodically over longer periods in the future. Seeing continuations of such dynamics 
would certainly lend support the convergence hypothesis, as well as potentially clarifying 
details of its mechanism.

Next, we consider our approach as being a useful analytical in its own right, 
providing a new approach to studying the structure of topics in the sciences. While our 
methodology is complementary to classification by experts and the study of citation- 
and co-authorship networks, it has the advantage that it lets the texts «speak for 
themselves», and allows us a view of the development of communities of knowledge 
that is intimately connected to their use of language. The techniques, moreover, lead to 
quantifiable insights via an analysis that is scalable (requiring only limited computer 
time, relative to time required to read and analyze the texts in full), but also wholly 
complementary to the study and understanding of experts within a field (in which sense 
it is only semi-automated, e.g. leaving the interpretation of meaning of topics to those 
performing such analysis).

Our approach also enables us to identify trends and infer hierarchies of topics based 
on their prevalence and relative distance to each other. The analysis of these hierarchies 
provides intuition about how fields of knowledge are organized, where convergence 
has occurred, and where it may occur in the future. It is important to note that these 
hierarchies reflect relative relationships expressed by the text, rather than as a strict 
epistemological statement in the style of Comte’s framework. They afford us a novel 
view on what is going on in a research community, and what the structure of knowledge 
looks like at a point in time, represented as a hierarchy. 

Although this paper has primarily focused on providing a means to quantify thinking 
about convergence as a measure for progress, both in epistemology and the history of 
science, it is important to stress that our approach could have much broader practical 
applications in two key areas: improving research efficiency and informing research 
strategy. Insofar as we have presented a methodology that allows a researcher to automate 
a large amount of the time and effort that usually needs to be invested in ‘taking stock’ of 
the literature, our approach could be applied more generally to drastically improve the 
efficiency of research. Indeed, with global scientific output estimated to be doubling every 
nine years (Bornmann & Mutz, 2015), there is a clear need for new tools and techniques 
to help researchers navigate the growing wilderness of academic literature. 

In relation to research strategy, more research institutions are now recognizing the 
new insights and significant advancements emanating from the cross-pollination of 
different disciplines. For this reason, collaboration between researchers of different fields 
is becoming more common. However, as the coming together of ideas is a complex and 
dynamic process whose effects are scattered throughout the literature, it is often difficult 
to know which research areas of disciplines would be the most fruitful to combine. 
Here, our approach could be particularly useful, as we have demonstrated a quantitative 
methodology for understanding which bodies of knowledge are on the rise (in terms 
of research popularity) and for identifying research areas that are significantly related 
in terms of knowledge content. Given the scalability and flexibility of our presented 
techniques, it is likely such tools could be adopted to inform policies governing resource 
allocation and guide research strategies of both academic institutions and individuals. 
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9.  APPENDIX 

The JSD, which we use as a distance measure for topic distributions, is calculated 
for a set of probability distributions M+1(A), where A is a set with is endowed with a 
σ-algebra. The JSD is thus a function that relates a pair of probability distributions to a 
positive real value 

 , 

although not yet a metric (D. M. Blei, Griffiths, & Jordan, 2010; Cherven, 2013; Kullback 
& Leibler, 1951; Lin, 1991) .

JSD is a symmetric and smoothed version of the relative entropy or Kullback-Leibler 
divergence (P||Q), which is defined as the expectation of the logarithmic difference 
between the discrete probabilities P(i) and Q(i), 

DKL(P││Q)= Σ i P(i)ln[P(i)/Q(i)].
JSD is now defined as

JSD(P││Q)=1/2·D(P││M)+1/2·D(Q││M), with
M=1/2·(P+Q).

JSD gives a measure of distance between two probability distributions. In order to 
calculate distances between the topics, we define the probability distributions Pt(d), 
as the normalized transpose of the topic allocation matrix. That is, we define vectors 
that describe, for each topic, the allocation that each document presents to this topic. 
We then scale this vector in order to ensure that the total allocation sums 1. These 
probability distributions have the form Pt(d), where t represents the topics and d the 
documents in the corpus. We define the distances between topics as the divergences 
between these distributions, calculated as the JSD.
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