Inteligência artificial e injustiça: para além de uma análise ética encantada dos algoritmos
DOI:
https://doi.org/10.14422/rib.i25.y2024.001Palabras clave:
bioética, inteligência artificial, injustiça algorítmicaResumen
Não há limites para as expectativas em relação às Inteligências Artificiais (IAs). O que não é consenso é se suas promissoras aplicações, caso se realizem, contemplarão a todos. O objetivo deste trabalho é refletir sobre os desafios éticos na utilização de IA, especialmente aqueles relacionados à justiça. Para isso, após apresentar os aspectos mais comumente levantados na discussão ética em relação a IA, será discutida a maneira diversa com que tais tecnologias podem interagir com contextos e corpos periféricos, representando risco de incremento de desigualdades. A partir dessa constatação, pretende-se não apenas descrever tais riscos, mas também vislumbrar possíveis recursos para enfrentar efeitos negativos das IAs em contextos historicamente vulnerados.
Descargas
Citas
Aru, J., Larkum, M. E., & Shine, J. M. (2023). The feasibility of artificial consciousness through the lens of neuroscience. Trends in Neurosciences, 46(12), 1008-1017. https://doi.org/10.1016/j.tins.2023.09.009
Benjamin, R. (2019). Assessing risk, automating racism. Science, 366(6464), 421-422. https://doi.org/10.1126/science.aaz3873
Birhane, A. (2021). Algorithmic injustice: a relational ethics approach. Patterns, 2(2), 1-9. https://doi.org/10.1016/j.patter.2021.100205
Buolamwini, J., & Gebru, T. (2018). Gender shades: intersectional accuracy disparities in commercial gender classification. Proceedings of the 1st Conference on Fairness, Accountability and Transparency, 81, 77-91. https://proceedings.mlr.press/v81/buolamwini18a.html
Cabitza, F., Rasoini, R., & Gensini, G. F. (2017). Unintended consequences of machine learning in medicine. The Journal of the American Medical Association, 318(6), 517-518. https://doi.org/10.1001/jama.2017.7797
Cambraia, L., Pyrrho, M., & Manchola-Castillo, C. (2023). Big Data e saúde: uma análise bioética. Teseo Press. https://doi.org/10.55778/ts911693147
Cerdeña, J. P., Plaisime, M. V., & Tsai, J. (2020). From race-based to race-conscious medicine: how anti-racist uprisings call us to act. The Lancet, 396(10257), 1125-1128. https://doi.org/10.1016/S0140-6736(20)32076-6
Cotton, D. R., Cotton, P. A., & Shipway, J. R. (2023). Chatting and cheating: ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 61(2), 228-239. https://doi.org/10.1080/14703297.2023.2190148
Dalton-Brown, S. (2020). The ethics of medical AI and the physician-patient relationship. Cambridge Quarterly of Healthcare Ethics, 29(1), 115-121. https://doi.org/10.1017/S0963180119000847
Dastin, J. (2018, October 10). Amazon scraps secret AI recruiting tool that showed bias against women. Reuters. https://www.reuters.com/article/idUSKCN1MK0AG/
Dick, S. (2019). Artificial Intelligence. Harvard Data Science Review, 1(1). https://doi.org/10.1162/99608f92.92fe150c
Faustino, D., & Lippold, W. (2023). Colonialismo digital: por uma crítica hacker-fanoniana. Boitempo Editorial.
Floridi, L. (2015). Singularitarians, aitheists, and why the problem with artificial intelligence is HAL (humanity at large), not HAL. Philosophy and Computers, 14(2), 8-11.
Garrafa, V. (2022). Bioética y transdisciplinariedad como puentes de diálogo entre las ciencias de la salud, las ciencias sociales y/o humanas en el contexto de la evaluación ética de investigaciones. Salud colectiva, 18, e4177. https://doi.org/10.18294/sc.2022.4177
Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Iii, H. D., & Crawford, K. (2021). Datasheets for datasets. Communications of the ACM, 64(12), 86-92. https://doi.org/10.1145/3458723
Hottois, G. (2020). ¿Qué es la bioética? Universidad del Bosque.
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399. https://doi.org/10.1038/s42256-019-0088-2
Khazanchi, R., Soled, D. R., & Yearby, R. (2023). Racism-conscious praxis: a framework to materialize anti-oppression in medicine, public health, and health policy. The American Journal of Bioethics, 23(4), 31-34. https://doi.org/10.1080/15265161.2023.2186521
McArthur, N. (2023a). AI worship as a new form of religion. PhilPapers. https://philarchive.org/rec/MCAAWA
McArthur, N. (2023b, March 15). Gods in the machine? The rise of Artificial Intelligence may result in new religions. The Conversation. https://theconversation.com/gods-in-the-machine-the-rise-of-artificial-intelligence-may-result-in-new-religions-201068
McLean, S., Read, G. J., Thompson, J., Baber, C., Stanton, N. A., & Salmon, P. M. (2023). The risks associated with Artificial General Intelligence: a systematic review. Journal of Experimental & Theoretical Artificial Intelligence, 35(5), 649-663. https://doi.org/10.1080/0952813X.2021.1964003
Mittelstadt, B. D., & Floridi, L. (2016). The ethics of Big Data: current and foreseeable issues in biomedical contexts. Science and Engineering Ethics, 22(2), 303-341.
Mohamed, S., Png, M. T., & Isaac, W. (2020). Decolonial AI: decolonial theory as sociotechnical foresight in artificial intelligence. Philosophy & Technology, 33, 659-684. https://doi.org/10.1007/s13347-020-00405-8
Munn, L. (2023). The uselessness of AI ethics. AI and Ethics, 3, 869-877. https://doi.org/10.1007/s43681-022-00209-w
Neff, G. (2013). Why Big Data won’t cure us. Big Data, 1(3), 117-123. https://doi.org/10.1089/big.2013.0029
Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-453. https://doi.org/10.1126/science.aax2342
Pyrrho, M., Cambraia, L., & de Vasconcelos, V. F. (2022a). Privacy and health practices in the digital age. The American Journal of Bioethics, 22(7), 50-59. https://doi.org/10.1080/15265161.2022.2040648
Pyrrho, M., Cambraia, L., & de Vasconcelos, V. F. (2022b). Response to open peer commentaries on “Privacy and health practices in the digital age”. The American Journal of Bioethics, 22(12), W5-W8. https://doi.org/10.1080/15265161.2022.2127972
Quijano, A. (2000). Colonialidad del poder, eurocentrismo y América Latina. En E. Lander (Ed.), La colonialidad del saber: eurocentrismo y ciencias sociales. Perspectivas Latinoamericanas (p. 118). CLACSO.
Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J. F., Breazeal, C., ... & Wellman, M. (2019). Machine behaviour. Nature, 568(7753), 477-486. https://doi.org/10.1038/s41586-019-1138-y
Russell, S., & Norvig, P. (2013). Inteligência Artificial. Elsevier.
Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021). The role of Artificial Intelligence in healthcare: a structured literature review. BMC Medical Informatics and Decision Making, 21, 125. https://doi.org/10.1186/s12911-021-01488-9
Siau, K., & Wang, W. (2020). Artificial Intelligence (AI) ethics: ethics of AI and ethical AI. Journal of Database Management, 31(2), 74-87. https://doi.org/10.4018/JDM.2020040105
Silva, T. (2020). Racismo algorítmico em plataformas digitais: microagressões e discriminação em código. Em T. Silva (Ed.), Comunidades, algoritmos e ativismos digitais: olhares afrodiaspóricos (pp. 121-135). LiteraRUA.
Sjoding, M. W., Dickson, R. P., Iwashyna, T. J., Gay, S. E., & Valley, T. S. (2020). Racial bias in pulse oximetry measurement. New England Journal of Medicine, 383(25), 2477-2478. https://doi.org/10.1056/NEJMc2029240
Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: addressing ethical challenges. PLoS Medicine, 15(11), e1002689. https://doi.org/10.1371/journal.pmed.1002689
Wilson, B., Hoffman, J., & Morgenstern, J. (2019). Predictive inequity in object detection. arXiv preprint arXiv:1902.11097. https://doi.org/10.48550/arXiv.1902.11097
Zuboff, S. (2019). A era do capitalismo de vigilância. Intrínseca.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Leonardo Cambraia, Monique Pyrrho
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores de artículos aceptados en la Revista Iberoamericana de Bioética conservan los derechos de propiedad intelectual sobre sus trabajos y otorgan a la revista los permisos de distribución y comunicación pública de los mismos, consintiendo que se publiquen bajo una licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional. Se recomienda a los autores publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales, repositorios, etc.) respetando las condiciones de esta licencia y citando debidamente la fuente original.