Artificial Intelligence and Injustice: Beyond an Enchanted Ethical Analysis of Algorithms

Authors

DOI:

https://doi.org/10.14422/rib.i25.y2024.001

Keywords:

bioethics, artificial intelligence, algorithmic injustice

Abstract

There are no limits to expectations regarding Artificial Intelligences (AIs). What there is no consensus on is whether their promising applications, if realized, will benefit everyone. The goal of this paper is to reflect on the ethical challenges of using AI, especially those related to justice. To this end, after a brief presentation of the aspects most commonly raised in ethical discussions in relation to AI, the work will discuss the diverse ways in which these technologies can interact with peripheral contexts and bodies, posing a risk of increasing inequalities. Based on this observation, the aim is not only to describe these risks, but also to look at possible resources for dealing with the negative effects of AIs in historically vulnerable contexts.

Downloads

Download data is not yet available.

References

Aru, J., Larkum, M. E., & Shine, J. M. (2023). The feasibility of artificial consciousness through the lens of neuroscience. Trends in Neurosciences, 46(12), 1008-1017. https://doi.org/10.1016/j.tins.2023.09.009

Benjamin, R. (2019). Assessing risk, automating racism. Science, 366(6464), 421-422. https://doi.org/10.1126/science.aaz3873

Birhane, A. (2021). Algorithmic injustice: a relational ethics approach. Patterns, 2(2), 1-9. https://doi.org/10.1016/j.patter.2021.100205

Buolamwini, J., & Gebru, T. (2018). Gender shades: intersectional accuracy disparities in commercial gender classification. Proceedings of the 1st Conference on Fairness, Accountability and Transparency, 81, 77-91. https://proceedings.mlr.press/v81/buolamwini18a.html

Cabitza, F., Rasoini, R., & Gensini, G. F. (2017). Unintended consequences of machine learning in medicine. The Journal of the American Medical Association, 318(6), 517-518. https://doi.org/10.1001/jama.2017.7797

Cambraia, L., Pyrrho, M., & Manchola-Castillo, C. (2023). Big Data e saúde: uma análise bioética. Teseo Press. https://doi.org/10.55778/ts911693147

Cerdeña, J. P., Plaisime, M. V., & Tsai, J. (2020). From race-based to race-conscious medicine: how anti-racist uprisings call us to act. The Lancet, 396(10257), 1125-1128. https://doi.org/10.1016/S0140-6736(20)32076-6

Cotton, D. R., Cotton, P. A., & Shipway, J. R. (2023). Chatting and cheating: ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 61(2), 228-239. https://doi.org/10.1080/14703297.2023.2190148

Dalton-Brown, S. (2020). The ethics of medical AI and the physician-patient relationship. Cambridge Quarterly of Healthcare Ethics, 29(1), 115-121. https://doi.org/10.1017/S0963180119000847

Dastin, J. (2018, October 10). Amazon scraps secret AI recruiting tool that showed bias against women. Reuters. https://www.reuters.com/article/idUSKCN1MK0AG/

Dick, S. (2019). Artificial Intelligence. Harvard Data Science Review, 1(1). https://doi.org/10.1162/99608f92.92fe150c

Faustino, D., & Lippold, W. (2023). Colonialismo digital: por uma crítica hacker-fanoniana. Boitempo Editorial.

Floridi, L. (2015). Singularitarians, aitheists, and why the problem with artificial intelligence is HAL (humanity at large), not HAL. Philosophy and Computers, 14(2), 8-11.

Garrafa, V. (2022). Bioética y transdisciplinariedad como puentes de diálogo entre las ciencias de la salud, las ciencias sociales y/o humanas en el contexto de la evaluación ética de investigaciones. Salud colectiva, 18, e4177. https://doi.org/10.18294/sc.2022.4177

Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Iii, H. D., & Crawford, K. (2021). Datasheets for datasets. Communications of the ACM, 64(12), 86-92. https://doi.org/10.1145/3458723

Hottois, G. (2020). ¿Qué es la bioética? Universidad del Bosque.

Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399. https://doi.org/10.1038/s42256-019-0088-2

Khazanchi, R., Soled, D. R., & Yearby, R. (2023). Racism-conscious praxis: a framework to materialize anti-oppression in medicine, public health, and health policy. The American Journal of Bioethics, 23(4), 31-34. https://doi.org/10.1080/15265161.2023.2186521

McArthur, N. (2023a). AI worship as a new form of religion. PhilPapers. https://philarchive.org/rec/MCAAWA

McArthur, N. (2023b, March 15). Gods in the machine? The rise of Artificial Intelligence may result in new religions. The Conversation. https://theconversation.com/gods-in-the-machine-the-rise-of-artificial-intelligence-may-result-in-new-religions-201068

McLean, S., Read, G. J., Thompson, J., Baber, C., Stanton, N. A., & Salmon, P. M. (2023). The risks associated with Artificial General Intelligence: a systematic review. Journal of Experimental & Theoretical Artificial Intelligence, 35(5), 649-663. https://doi.org/10.1080/0952813X.2021.1964003

Mittelstadt, B. D., & Floridi, L. (2016). The ethics of Big Data: current and foreseeable issues in biomedical contexts. Science and Engineering Ethics, 22(2), 303-341.

Mohamed, S., Png, M. T., & Isaac, W. (2020). Decolonial AI: decolonial theory as sociotechnical foresight in artificial intelligence. Philosophy & Technology, 33, 659-684. https://doi.org/10.1007/s13347-020-00405-8

Munn, L. (2023). The uselessness of AI ethics. AI and Ethics, 3, 869-877. https://doi.org/10.1007/s43681-022-00209-w

Neff, G. (2013). Why Big Data won’t cure us. Big Data, 1(3), 117-123. https://doi.org/10.1089/big.2013.0029

Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-453. https://doi.org/10.1126/science.aax2342

Pyrrho, M., Cambraia, L., & de Vasconcelos, V. F. (2022a). Privacy and health practices in the digital age. The American Journal of Bioethics, 22(7), 50-59. https://doi.org/10.1080/15265161.2022.2040648

Pyrrho, M., Cambraia, L., & de Vasconcelos, V. F. (2022b). Response to open peer commentaries on “Privacy and health practices in the digital age”. The American Journal of Bioethics, 22(12), W5-W8. https://doi.org/10.1080/15265161.2022.2127972

Quijano, A. (2000). Colonialidad del poder, eurocentrismo y América Latina. En E. Lander (Ed.), La colonialidad del saber: eurocentrismo y ciencias sociales. Perspectivas Latinoamericanas (p. 118). CLACSO.

Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J. F., Breazeal, C., ... & Wellman, M. (2019). Machine behaviour. Nature, 568(7753), 477-486. https://doi.org/10.1038/s41586-019-1138-y

Russell, S., & Norvig, P. (2013). Inteligência Artificial. Elsevier.

Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021). The role of Artificial Intelligence in healthcare: a structured literature review. BMC Medical Informatics and Decision Making, 21, 125. https://doi.org/10.1186/s12911-021-01488-9

Siau, K., & Wang, W. (2020). Artificial Intelligence (AI) ethics: ethics of AI and ethical AI. Journal of Database Management, 31(2), 74-87. https://doi.org/10.4018/JDM.2020040105

Silva, T. (2020). Racismo algorítmico em plataformas digitais: microagressões e discriminação em código. Em T. Silva (Ed.), Comunidades, algoritmos e ativismos digitais: olhares afrodiaspóricos (pp. 121-135). LiteraRUA.

Sjoding, M. W., Dickson, R. P., Iwashyna, T. J., Gay, S. E., & Valley, T. S. (2020). Racial bias in pulse oximetry measurement. New England Journal of Medicine, 383(25), 2477-2478. https://doi.org/10.1056/NEJMc2029240

Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: addressing ethical challenges. PLoS Medicine, 15(11), e1002689. https://doi.org/10.1371/journal.pmed.1002689

Wilson, B., Hoffman, J., & Morgenstern, J. (2019). Predictive inequity in object detection. arXiv preprint arXiv:1902.11097. https://doi.org/10.48550/arXiv.1902.11097

Zuboff, S. (2019). A era do capitalismo de vigilância. Intrínseca.

Inteligência artificial e injustiça

Published

2024-07-15

How to Cite

Cambraia, L., & Pyrrho, M. (2024). Artificial Intelligence and Injustice: Beyond an Enchanted Ethical Analysis of Algorithms. Revista Iberoamericana De Bioética, (25), 01–15. https://doi.org/10.14422/rib.i25.y2024.001