Artificial Intelligence and Injustice: Beyond an Enchanted Ethical Analysis of Algorithms
DOI:
https://doi.org/10.14422/rib.i25.y2024.001Keywords:
bioethics, artificial intelligence, algorithmic injusticeAbstract
There are no limits to expectations regarding Artificial Intelligences (AIs). What there is no consensus on is whether their promising applications, if realized, will benefit everyone. The goal of this paper is to reflect on the ethical challenges of using AI, especially those related to justice. To this end, after a brief presentation of the aspects most commonly raised in ethical discussions in relation to AI, the work will discuss the diverse ways in which these technologies can interact with peripheral contexts and bodies, posing a risk of increasing inequalities. Based on this observation, the aim is not only to describe these risks, but also to look at possible resources for dealing with the negative effects of AIs in historically vulnerable contexts.
Downloads
References
Aru, J., Larkum, M. E., & Shine, J. M. (2023). The feasibility of artificial consciousness through the lens of neuroscience. Trends in Neurosciences, 46(12), 1008-1017. https://doi.org/10.1016/j.tins.2023.09.009
Benjamin, R. (2019). Assessing risk, automating racism. Science, 366(6464), 421-422. https://doi.org/10.1126/science.aaz3873
Birhane, A. (2021). Algorithmic injustice: a relational ethics approach. Patterns, 2(2), 1-9. https://doi.org/10.1016/j.patter.2021.100205
Buolamwini, J., & Gebru, T. (2018). Gender shades: intersectional accuracy disparities in commercial gender classification. Proceedings of the 1st Conference on Fairness, Accountability and Transparency, 81, 77-91. https://proceedings.mlr.press/v81/buolamwini18a.html
Cabitza, F., Rasoini, R., & Gensini, G. F. (2017). Unintended consequences of machine learning in medicine. The Journal of the American Medical Association, 318(6), 517-518. https://doi.org/10.1001/jama.2017.7797
Cambraia, L., Pyrrho, M., & Manchola-Castillo, C. (2023). Big Data e saúde: uma análise bioética. Teseo Press. https://doi.org/10.55778/ts911693147
Cerdeña, J. P., Plaisime, M. V., & Tsai, J. (2020). From race-based to race-conscious medicine: how anti-racist uprisings call us to act. The Lancet, 396(10257), 1125-1128. https://doi.org/10.1016/S0140-6736(20)32076-6
Cotton, D. R., Cotton, P. A., & Shipway, J. R. (2023). Chatting and cheating: ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 61(2), 228-239. https://doi.org/10.1080/14703297.2023.2190148
Dalton-Brown, S. (2020). The ethics of medical AI and the physician-patient relationship. Cambridge Quarterly of Healthcare Ethics, 29(1), 115-121. https://doi.org/10.1017/S0963180119000847
Dastin, J. (2018, October 10). Amazon scraps secret AI recruiting tool that showed bias against women. Reuters. https://www.reuters.com/article/idUSKCN1MK0AG/
Dick, S. (2019). Artificial Intelligence. Harvard Data Science Review, 1(1). https://doi.org/10.1162/99608f92.92fe150c
Faustino, D., & Lippold, W. (2023). Colonialismo digital: por uma crítica hacker-fanoniana. Boitempo Editorial.
Floridi, L. (2015). Singularitarians, aitheists, and why the problem with artificial intelligence is HAL (humanity at large), not HAL. Philosophy and Computers, 14(2), 8-11.
Garrafa, V. (2022). Bioética y transdisciplinariedad como puentes de diálogo entre las ciencias de la salud, las ciencias sociales y/o humanas en el contexto de la evaluación ética de investigaciones. Salud colectiva, 18, e4177. https://doi.org/10.18294/sc.2022.4177
Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Iii, H. D., & Crawford, K. (2021). Datasheets for datasets. Communications of the ACM, 64(12), 86-92. https://doi.org/10.1145/3458723
Hottois, G. (2020). ¿Qué es la bioética? Universidad del Bosque.
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399. https://doi.org/10.1038/s42256-019-0088-2
Khazanchi, R., Soled, D. R., & Yearby, R. (2023). Racism-conscious praxis: a framework to materialize anti-oppression in medicine, public health, and health policy. The American Journal of Bioethics, 23(4), 31-34. https://doi.org/10.1080/15265161.2023.2186521
McArthur, N. (2023a). AI worship as a new form of religion. PhilPapers. https://philarchive.org/rec/MCAAWA
McArthur, N. (2023b, March 15). Gods in the machine? The rise of Artificial Intelligence may result in new religions. The Conversation. https://theconversation.com/gods-in-the-machine-the-rise-of-artificial-intelligence-may-result-in-new-religions-201068
McLean, S., Read, G. J., Thompson, J., Baber, C., Stanton, N. A., & Salmon, P. M. (2023). The risks associated with Artificial General Intelligence: a systematic review. Journal of Experimental & Theoretical Artificial Intelligence, 35(5), 649-663. https://doi.org/10.1080/0952813X.2021.1964003
Mittelstadt, B. D., & Floridi, L. (2016). The ethics of Big Data: current and foreseeable issues in biomedical contexts. Science and Engineering Ethics, 22(2), 303-341.
Mohamed, S., Png, M. T., & Isaac, W. (2020). Decolonial AI: decolonial theory as sociotechnical foresight in artificial intelligence. Philosophy & Technology, 33, 659-684. https://doi.org/10.1007/s13347-020-00405-8
Munn, L. (2023). The uselessness of AI ethics. AI and Ethics, 3, 869-877. https://doi.org/10.1007/s43681-022-00209-w
Neff, G. (2013). Why Big Data won’t cure us. Big Data, 1(3), 117-123. https://doi.org/10.1089/big.2013.0029
Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-453. https://doi.org/10.1126/science.aax2342
Pyrrho, M., Cambraia, L., & de Vasconcelos, V. F. (2022a). Privacy and health practices in the digital age. The American Journal of Bioethics, 22(7), 50-59. https://doi.org/10.1080/15265161.2022.2040648
Pyrrho, M., Cambraia, L., & de Vasconcelos, V. F. (2022b). Response to open peer commentaries on “Privacy and health practices in the digital age”. The American Journal of Bioethics, 22(12), W5-W8. https://doi.org/10.1080/15265161.2022.2127972
Quijano, A. (2000). Colonialidad del poder, eurocentrismo y América Latina. En E. Lander (Ed.), La colonialidad del saber: eurocentrismo y ciencias sociales. Perspectivas Latinoamericanas (p. 118). CLACSO.
Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J. F., Breazeal, C., ... & Wellman, M. (2019). Machine behaviour. Nature, 568(7753), 477-486. https://doi.org/10.1038/s41586-019-1138-y
Russell, S., & Norvig, P. (2013). Inteligência Artificial. Elsevier.
Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021). The role of Artificial Intelligence in healthcare: a structured literature review. BMC Medical Informatics and Decision Making, 21, 125. https://doi.org/10.1186/s12911-021-01488-9
Siau, K., & Wang, W. (2020). Artificial Intelligence (AI) ethics: ethics of AI and ethical AI. Journal of Database Management, 31(2), 74-87. https://doi.org/10.4018/JDM.2020040105
Silva, T. (2020). Racismo algorítmico em plataformas digitais: microagressões e discriminação em código. Em T. Silva (Ed.), Comunidades, algoritmos e ativismos digitais: olhares afrodiaspóricos (pp. 121-135). LiteraRUA.
Sjoding, M. W., Dickson, R. P., Iwashyna, T. J., Gay, S. E., & Valley, T. S. (2020). Racial bias in pulse oximetry measurement. New England Journal of Medicine, 383(25), 2477-2478. https://doi.org/10.1056/NEJMc2029240
Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: addressing ethical challenges. PLoS Medicine, 15(11), e1002689. https://doi.org/10.1371/journal.pmed.1002689
Wilson, B., Hoffman, J., & Morgenstern, J. (2019). Predictive inequity in object detection. arXiv preprint arXiv:1902.11097. https://doi.org/10.48550/arXiv.1902.11097
Zuboff, S. (2019). A era do capitalismo de vigilância. Intrínseca.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Leonardo Cambraia, Monique Pyrrho
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The authors of articles published in Revista Iberoamericana de Bioética retain the intellectual property rights over their works and grant the journal their distribution and public communication rights, consenting to their publication under a Creative Commons Attribution-NonCommercial-NoDerivates 4.0 Internacional. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages, repositories, etc.) respecting the conditions of this license and quoting appropriately the original source.