Principles of minimal cognition in smart slime molds and social bacteria

Authors

  • Óscar Castro García Universitat Autònoma of Barcelona

Keywords:

Umwelt, subjectual, enaction, haptic perception, Weber-Fechner Law, bio-fenomenology

Abstract

The perception of the environment as well as sensorimotor coordination of unicellularsorganisms competence as the foundation of a cognitive principle that goes beyond minimum metabolicprocesses. I study the recognition of the environment in case of slime mold and bacteria as significantlearning processes in differentiating between hostile environment or optimal and physical transformationsof each agency on the basis of received signals in both the membrane and within the agencies.Sensorimotor coordination mechanisms of metabolic adaptation expanded shapes. Some of these coordination mechanisms are linked to the perception with the environment through pulses, as temporal processing of signals.

Downloads

Download data is not yet available.

References

BALUŠKA, S., and MANCUSO, S. (2009), Deep evolutionary origins of neurobiology, Communicative & Integrative Biology 2:1, 60-65.

BARANDIARAN, X.; DI PAOLO, E., and ROHDE, M. (2009), Defining Agency. Individuality, normativity, asymmetry and spatio-temporality in action, Journal of Adaptive Behavior, in press [Rohde, M., and Ikegami, T. (eds.), Special Issue on Agency].

BARENDS, T. R., et al. (2009), Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase, Nature, 459 (7249), pp. 1015-8.

BATESON, G. (1979), Espíritu y Naturaleza, Amorrortu Editores, 2006, 2.ª ed., 3.ª reimp., Buenos Aires.

BEN-JACOB, E. (2009), «Learning from Bacteria about Natural Information Processing». In: Natural Genetic Engineering and Natural Genome Editing, Edited by G. Witzany, Annual New York Academy of Sciences, 1178, pp. 78-90.

BEN-JACOB, E.; SHAPIRA, Y., and TAUBER, A. I. (2006), Seeking the Foundations of Cognition in Bacteria. From Schrödinger’s Negative Entropy to Latent Information, Physica A, 359, pp. 495-524.

CASTRO, O. (2009), Jakob von Uexküll: El concepto de Umwelt y el origen de la biosemiótica. Trabajo de investigación para la obtención del DEA, Departament de Filosofia, Universitat Autònoma de Barcelona.

COPE, F. W. (1976), Derivation of the Weber-Fechner law and the Loewenstein equation as the steadystate response of an Elovich solid state biological system, Bulletin of Mathematical Biology, 38(2), pp. 111-118.

COPELLI, M. (2002), Physics of psychophysics. Stevens and Weber-Fechner laws are transfer functions of excitable media, Physics Review E, 65, 060901-1-4.

GARCÍA MARTÍNEZ, J. M. (2007), Mecanismos intracelulares de supervivencia y muerte neuronal en modelos excitóxicos y transgénicos de la enfermedad de Huntington. Tesis doctoral, Universidad de Barcelona, Departamento de Biología Celular y Anatomía Patológica.

HELLINGWERF, K. J. (2005), Bacterial observations: a rudimentary form of intelligence?, Trends in Microbiology 13(4), pp. 152-158.

HILLEN, T., and PAINTER, K. J. (2009), A user’s guide to PDE models for chemotaxis, Journal of Mathematical Biology, 58, pp. 183-217.

HOFFMEYER, J. (1998), Surfaces inside surfaces. On the origin of agency and life, Cybernetics and Human Knowing, 5(1), pp. 33-42.

KANG, CH. M., et al. (1996), Homologous Pairs of Regulatory Proteins Control Activity of Bacillus subtilis Transcription Factor B in Response to Environmental Stress, Journal of Bacteriology, 178(13), pp. 3846-3853.

KELLER, E. F., and SEGEL, L. A. (1971), Traveling Bands of Chemotactic Bacteria: A Theoretical Analysis. Journal of Theoretical Biology, 30, pp. 235-248.

KISHIMOTO, U. (1958a), Rhythmicity in the protoplasmic streaming of a slime mold, Physarum polycephalum I, The Journal of General Physiology, 41(6), pp. 1205-1222.

— (1958b), Rhythmicity in the protoplasmic streaming of a slime mold, Physarum polycephalum II, The Journal of General Physiology, 41(6), pp. 1223-1244.

KOVÁČ, L. (2006), Life, chemistry and cognition. Conceiving life as knowledge embodied in sentient chemical systems might provide new insights into the nature of cognition, European Molecular Biology Organization, Vol. 7, No. 6, pp. 562-566.

LENOIR, T. (1989), The Strategy of Life: Teleology and Mechanics in Nineteenth-Century German Biology, University of Chicago Press.

LLINÁS, R. R. (2001), I of the Vortex, From Neurons to Self, MIT Press.

LUISI, P. L. (2006), The Emergence of Life: from Chemical Origin to Synthetic Biology, Cambridge University Press.

MATURANA, H. R. (1970), Biology of Cognition. Reimpreso en MATURANA, H. R., and VARELA, F. J. (1980), Autopoiesis: The Organitation of the Living, Reidel Publishing Company, Doldrecht, Holland.

MEDINA, A. E., et al. (2006), Restoration of Neuronal Plasticity by a Phosphodiesterase Type 1 Inhibitor in a Model of Fetal Alcohol Exposure, The Journal of Neuroscience, January 18, 2006, 26(3) pp. 1057-1060.

MIYAKE, Y., et al. (1993), Environment-dependent self organization of positional information field in coupled nonlinear oscillator system, The IEICE Transactions Fundamentals, E76- A (5), pp. 780-785.

MÜLLER, B. S.; DI PRIMIO, F., and LENGELER, J. W. (2001), «Contributions of Minimal Cognition to Flexibility». In: N. CALLAOS, W. BADAWY & S. BOZINOVSKI (eds.), SCI 2001 Proceedings of the 5th World Multi-Conference on Systemics, Cybernetics and Informatics, Vol. XV, Industrial Systems: Part II, by the International Institute of Informatics and Systemics, 93-98.

NAKAGAKI, T. (2001), Smart behavior of true slime mold in a labyrinth, Research in Microbiology, 152, pp. 767-770.

NAKAGAKI, T.; YAMADA, H., and TOTH, A. (2000), Maze-solving by an amoeboid-organism, Nature, 407, p. 470.

PFEFFER, W. (1888), «Über chemotaktische Bewegungen von Bacterien, Flagellaten u. Volvocineen». In: Untersuchungen Botanischen aus dem Institut zu Tubingen, Vol. 2, Verlag von Wilhelm Engelmann, Leipzig, pp. 582-661.

SATO, M.; WONG, T. Z., and ALLEN, R. (1983), Rheological Properties of Living Cytoplasm. Endoplasm of Physarum Plasmodium, The Journal of Cell Biology, 97, pp. 1089-1097.

SHUSTER, S. C., et al. (1996), The hybrid histidine kinase DokA is part of the osmotic response system of Dictyostelium, The EMBO Journal, 15, No. 15, pp. 3880-3889.

STEVENS, S. S. (1957), On the psychophysical law, Psychological Review, 64(3), pp. 153-181.

STOCK, A. M., et al. (2000), Two-Component Signal Transduction, Annual Review of Biochemical, 69, pp. 183-215.

TAKAMATSU, A.; TAKABA, E., and TAKIZAWA, G. (2009), Environment-dependent morphology in plasmodium of true slime mold Physarum polycephalum and a network grow model, Journal od Theoretical Biology, 256, pp. 29-44.

UEXKÜLL, J. VON (1909), Umwelt und Innenwelt der Tiere, Berlin: J. Springer, 261.

— (1930), Die Lebenslehre, Potsdam: Müller und Kiepenheuer Verlag, und Zürich: Orell Füssli Verlag.

— (1940), Bedeutungslehre, Leipzig: Verlag von J. A. Barth.

VEDRAL, V. (2010), Decoding Reality the Universe as Quantum Information, Oxford University Press, Oxford. In: WERNER, E. (2010), Meaning in a Quantum Universe, Science, Vol. 329, No. 5992, pp. 629-630.

WERNER, E. (1996), Applications of Multi-Agent Systems, J. W. PERRAM and J.-P. MÜLLER (eds.) (Springer Verlag, Berlin), pp. 19-39.

WITZANY, G. (2008a), Biocommunication of Unicellular and Multicellular Organisms, Triple C, 6(1), pp. 24-53.

— (2008b), Biocommunication of Bacteria and its Evolutionary Interrelations to Natural Genome

Editing Competences of Viruses, Nature Precedings, 1738.2

How to Cite

Castro García, Óscar. (2013). Principles of minimal cognition in smart slime molds and social bacteria. Pensamiento. Revista De Investigación E Información Filosófica, 67(254 S.Esp), 787–797. Retrieved from https://revistas.comillas.edu/index.php/pensamiento/article/view/1113