Some relational theories on the structure of space-time: physics, philosophy, theology

Authors

  • Miguel Lorente Páramo Universidad de Oviedo

Keywords:

space-time, relational theory, spin networks, urs theory, space-time code, causal sets, spin foams, quantum causal histories, causal cubic lattice, Creation, God rationality, Incarnation

Abstract

We present some modern theories on the structure of space-time that can be classified as relational theories in the direction of Leibniz’s ontology. In particular we summarize the Leibniz’s position against Newton and Clarke on the nature of space-time, Penrose’s model of spin networks, Heisenberg’s fundamental equation for the unification of elementary particles, Finkelstein’s space-time code, Weizsäcker’s urs theory that unifies the postulates of quantum mechanics and the theory of relativity, Sorkin’s causal sets, Markopoulou’s quantum causal histories, Markopoulou and Smolin’s causal spin foams, in the last three of which the principle of causality has been introduced. In order to analyze the nature of space-time, we consider three levels of knowledge —observational, theoretical and ontological— to which the different models can be ascribed. Following similar approach to the models mentioned in the first sections, we present our theoretical model of the structure of the space-time, some physical applications and the ontological interpretation of the model. In order to implement the above models with theological aspects we present in the last sections two theologians, Pannenberg and Torrance, who have made explicit analysis of the nature of space-time from a relational point of view. Following their expositions we have presented, after some epistemological presuppositions, the connection between the Creation and the rationality of God through the structure of space-time and the communication of God to the creatures in the Incarnation through the same structure.

Downloads

Download data is not yet available.

References

LEIBNIZ, «Correspondence with Samuel Clarke», III letter, n. 4.

LEIBNIZ, «Correspondence with Samuel Clarke», V letter, n. 47.

G. W. LEIBNIZ, «Initia rerum mathematicarum metaphysica», in Mathematische Schriften (C. I. Gerhardt, ed.), Olms, Hildesheim, 1962, vol. VII, pp. 17-39.

EARMAN, World enough and space-time, MIT Press, Cambridge, 1989, p. 15.

Monadología, ed. de J. VELARDE, Biblioteca Nueva, Madrid, 2001, p. 47.

R. PENROSE, «On the nature of quantum geometry», in Magic without magic (J. A. Wheeler and J. R. Klauder, ed.), Freeman, San Francisco, 1972, p. 334.

R. PENROSE, «Angular momentum: an approach to combinatorial space-time», in Quantum theory and beyond (T. Bastin, ed.), Cambridge U. Press, Cambridge, 1971.

C. F. VON WEIZSÄCKER, «Heisenberg’s conception of Physics», in Quantum Theory and the Structure of Space-time (L. Castell et al., ed.), Hanser, Munich, vol. 2, p. 18.

H. P. DÜRR, «Heisenberg’s unified theory of elementary particles and the structure of time and space», in Quantum theory and the structure of space-time (L. Castell, M. Drieschner and C. F. Weizsäcker, ed.), Hanser, München, 1977, vol. 2, p. 33.

D. FINKELSTEIN, «Space-time code», in Phys. Rev. 184, 1261 1271 (1969).

D. FINKELSTEIN, «Space-time code IV», in Phys. Rev. D9, 2219 (1974).

L. CASTELL, M. DRIESCHNER and C. F. WEIZSÄKER (eds.), Quantum theory and the structure of Space and Time (6 vols.), Hanser, Munich, 1975-1986.

TH. GÖRNITZ and O. ISCHEBECK, «An introduction to C. F. von Weizsäker’s Program for a reconstruction of Quantum Theory», in Time, Quantum and Information (L. Castell and O. Ischebeck, ed.), Springer, Berlin, 2003.

C. F. V. WEIZSÄCKER, «A Reconstruction of Quantum Theory», in Quantum Theory and the structure of time and space (L. Castell et al., ed.), Hanser, München, vol. 3, p. 7.

C. F. V. WEIZSÄCKER, «Binary alternatives and the space time structure», in Quantum Theory and the structure of time and space (L. Castell et al., ed.), Hanser, München, 1977, vol. 2, p. 86.

H. LYRE, «C. F. von Weizsäcker’s Reconstruction of Physics: Yesterday, Today, Tomorrow», in Time, Quantum and Information (L. Castell and O. Ischebeck, ed.), Springer, Berlin, 2003, p. 381.

R. SORKIN, «Causal sets: Discrete Gravity» (Notes for the Valdivia Summer School Jan. 2002), arXiv: gr-qc/0309009.

R. SORKIN, «A specimen of theory construction from quantum gravity», in The Creation of Ideas in Physics (Jarrett Leplin, ed.), Kluwer, Dordrecht, 1995. arXiv: gr-qc/9511063.

A. ROBB, A theory of Time and Space, Cambridge U. Press, 1914.

H. REICHENBACH, Axiomatization of the theory of relativity, University of California Press, Berkeley, 1969.

L. BOMBELLI, J. LEE, D. MEYER and R. SORKIN, «Space-Time as a causal set», in Phys. Rev. Lett 59, 521-524 (1987).

L. SMOLIN, Three roads to quantum gravity, Weidenfeld and Nicholson, London, 2000, p. 138.

F. MARKOPOULOU and L. SMOLIN, Disordered locality in loop quantum gravity states, arXiv:gr-qc/0702044.

F. MARKOPOULOU, «Planck-scale models of the universe», in Science and ultimate reality: quantum theory, cosmology and complexity (J. D. Barrow, P. Davies and C. Harper, ed.), C.U.P., Cambridge, 2003. arXiv:gr-qc/0210086.

F. MARKOPOULOU, «Quantum causal histories», in Class, Quant. Grav. 17, 2059-2072 (2000). arXiv:hep-th/9904009.

F. MARKOPOULOU, An insider’s guide to quantum causal histories. arXiv: hep-th/9912137.

J. BAEZ, «An introduction to Spin Foam Models of Quantum Gravity and BF Theory», in Lect. Notes Phys. 543, 25-94 (2000).

A. PÉREZ, «Spin Foam Models for Quantum Gravity», in Class. Quant. Grav. 20 (2003) R43. arXiv: gr-qc/0301113.

J. W. BARRETT and L. CRANE, «Relativistic Spin Networks and Quantum Gravity», in J. Math. Phys. 39 (1998), 3296-3302.

F. MARKOPOULOU and L. SMOLIN, «Quantum Geometry with Intrinsic Local Causality», Phys. Rev. D 58 084032 (1998); «Causal Evolution of Spin Networks», in Nucl. Phys. B 508 (1997), 409-430.

E. R. LIVINE and D. ORITI, «Implementing causality in the spin foam quantum geometry», in Nucl. Phys. B (2003), 231-279, arXiv: gr-qc/0210064.

F. MARKOPOULOU, New directions in Background Independent Quantum Gravity, arXiv: gr-qc/0703097.

M. LORENTE, «A realistic interpretation of Lattice gauge theories», in Fundamental Problems in quantum physics (M. Ferrero and Van der Merwe, ed.), Kluwer, New York, 1995, pp. 177-186. arXiv: hep-lat/0312044.

M. LORENTE, «Quantum process and the foundation of relational theories of spacetime», in Relativity in general (J. Díaz Alonso and M. Lorente, ed.), Paris: Editions Frontieres, 1994, pp. 297-302. arXiv: gr-qc/0312119.

M. LORENTE, «A discrete curvature on a planar graph», in Encuentros de Física Fundamental Alberto Galindo, U.C.M., Madrid, 2004, pp. 339-353. arXiv: gr-qc/0412094.

M. LORENTE, «Continuous vs. discrete models for the quantum harmonic oscillator and the hydrogen atom», in Phys. Lett. A 285 (2001), 119-126. arXiv: quant-ph/0401087.

M. LORENTE and P. KRAMER, «Representations of the discrete inhomogeneous Lorentz group and Dirac wave equation on the lattice», in J. Phys A: Mat. Gen. 32 (1999), 2481-2497. arXiv: hep-lat/0401019.

M. LORENTE, «A new scheme for the Klein-Gordon and Dirac fields on the lattice with axial anomaly», in J. Group. Theor. Phys 1 (1993), 105 121. arXiv: hep-lat/0312039.

L. BOMBELLI and M. LORENTE, A combinatorial approach to discrete geometry, Proceed XXVIII Encuentros Relativistas Españoles (J. DÍAZ and L. MORNAS, ed.), Oviedo, 2005. arXiv: gr-qc/0512142.

P. KRAMER and M. LORENTE, «Surface embedding, topology and dualization for spin networks», in J. Phys A: Mat. Gen. 35 (2002), 8563-8574.

R. PENROSE, The road to reality, Knopf. N.Y., 2005, p. 17.

M. LORENTE, «A causal interpretation of the structure of space and time», in Foundations of Physics (P. Weingartner and G. Dorn, ed.), Vienna: Verlag Hölder-Pichler-Tempsky, 1986, pp. 345-368.

F. MARKOPOULOU and L. SMOLIN, «Causal evolution of spin networks», in Nucl. Phys. B 508 (1997), pp. 409-430.

W. PANNENBERG, Systematic Theology, W. B. Eerdnans Publ., Grand Rapids, 1991 (Spanish translation: Teología sistemática, UPCo, Madrid, 1996), vol. 2, pp. 84-102.

M. JAMMER, Concepts of space. The History of Theories of Space in Physics, Dover, N.Y., 1993, p. 64.

W. PANNENBERG, Systematic Theology», vol. 2, p. 97.

T. F. TORRANCE, Space, time and Incarnation, T&T Clark, Edinburgh, 1997.

How to Cite

Lorente Páramo, M. (2015). Some relational theories on the structure of space-time: physics, philosophy, theology. Pensamiento. Revista De Investigación E Información Filosófica, 64(242 S.Esp), 665–691. Retrieved from https://revistas.comillas.edu/index.php/pensamiento/article/view/5129