Plato’s Myth of the Digital Cave: The Role of Generative Artificial Intelligence in the World of Ideas and its Content as the Shadow of Art

Authors

DOI:

https://doi.org/10.14422/ryf.vol289.i1467.y2025.001

Keywords:

artificial intelligence, Plato, deep learning, The Parable of the Cave

Abstract

This work explores two hypotheses regarding the role of artificial intelligence from a Platonic perspective. The first proposes that a utopian deep neural network —trained on an infinite amount of data encompassing all objective knowledge of the world— could have its place within Plato’s World of Ideas. These systems are already generating representations, such as chess strategies, that humans cannot comprehend. Therefore, it is suggested that machine learning models, thanks to their capacity to generate representations of the sensible world, can be considered an approximate shadow of Platonic Ideas, offering us a new way of thinking about the relationship between the visible and the intelligible. The second hypothesis, more practical and critical in nature, follows from the first. It warns of the risks posed by content generated by such artificial intelligences, especially when images and texts are created with negative intent. If art, for Plato, was already a copy of reality —a shadow in the Cave— then AI-generated content would be a “shadow of that shadow”: a Second Level of the Cave. In this scenario, we may find ourselves increasingly trapped in a Digital Cave, perceiving representations ever further from the truth, without realizing that we have stopped looking at reality itself.

Downloads

Download data is not yet available.

References

Adidi, D. T. (2024). Aristotle’s concept of Telos and artificial intelligence: Exploring the relevance of classical philosophy to contemporary AI development. AMAMIHE Journal of applied philosophy 22(3) 60-67.

Annas, J. (1981). An Introduction to Plato’s Republic. Oxford University Press

Blanco, C. (2022). Las fronteras del pensamiento. Editorial Dykinson, S.L.

Boddington, P. (2023). AI, philosophy of technology, and ethics. In AI ethics: a textbook, 91‑130. Springer.

Bostrom, N. (2017). Superintelligence: paths, dangers, strategies. Oxford University Press.

Bridge, J. P. (2010). Machine learning and automated theorem proving. University of Cambridge, Computer Laboratory.

Carter, M. (2007). Minds and computers: an introduction to the philosophy of artificial intelligence. Edinburgh University Press.

Copeland, J. (1993). Artificial intelligence: a philosophical Introduction. Blackwell.

Copleston, F. (2003). A history of philosophy: Volume 2, medieval philosophy. A&C Black.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A. (2018). Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35(1), 53‑65.

DeGroot, M. H., and M. J. Schervish. (2012). Probability and statistics. Pearson Education.

Duan, S. X. (2022). “Platonic computer–the universal machine that bridges the ‘inverse explanatory gap’ in the philosophy of mind.” Filozofia i Nauka. Studia filozoficzne i interdyscyplinarne, 10(zs), 285‑302.

Floridi, L. (2014). The fourth revolution: how the infosphere is reshaping human reality. Oxford University Press.

Fodor, J. A. (1987). Psychosemantics: The problem of meaning in the philosophy of mind. MIT Press.

Fraile, G. (1997). Historia de la filosofía. Vol. 1: Grecia y Roma. Biblioteca de Autores Cristianos.

Garrido Merchán, E. C., & Lumbreras, S. (2023). Can computational intelligence model phenomenal consciousness? Philosophies, 8(4), 70.

Garrido-Merchán, E. C. (2024). Machine consciousness as pseudoscience: The myth of conscious machines (arXiv:2405.07340) [Preprint]. arXiv. https://arxiv.org/abs/2405.07340

Garrido-Merchán, E. C., & Blanco, C. (2022). Do artificial intelligence systems understand? (arXiv:2207.11089) [Preprint]. arXiv. https://arxiv.org/abs/2207.11089

Jospin, L. V., Laga, H., Boussaid, F., Buntine, W., & Bennamoun, M. (2022). Hands-on Bayesian neural networks–A tutorial for deep learning users. IEEE Computational Intelligence Magazine, 17(2), 29‑48.

Karagiorgi, G., Kasieczka, G., Kravitz, S., Nachman, B., & Shih, D. (2022). Machine learning in the search for new fundamental physics. Nature Reviews Physics, 4(6), 399‑412.

Karpouzis, K. (2024). Plato’s shadows in the digital cave: Controlling cultural bias in generative AI. Electronics, 13(8), 1457.

Kirk, G. S. (1951). Natural change in Heraclitus. Mind, 60(237), 35‑42.

Lather, A. (2018). The extended mind of Hephaestus: Automata and artificial intelligence in early Greek hexameter. En P. Meineck, W. M. Short y J. J. Devereaux (eds.), The Routledge handbook of classics and cognitive theory (pp. 331‑344). Routledge.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436‑444.

Lumbreras, S., & Garrido-Merch.n, E. C. (2024). Human Interiority and Artificial Intelligence: An Analysis from the Perspective of Saint Augustine and Saint Teresa. Scientia et Fides, 12(2), 265‑295.

Lundstrom, M. S., & Alam, M. A. (2022). Moore’s law: The journey ahead. Science, 378(6621), 722‑723.

Mary, S. S. C., Ross, D. S., & Arun, J. (2024). Connecting human mind with machine learning: from a platonic approach. Multidisciplinary Science Journal 6.

Garrido Merchán, E. C. (2022). Transhumanismo y consciencia fenoménica. Relectiones. Revista Interdisciplinar de Filosofía y Humanidades, 9, 109‑126

Miranda, L. (2020). Artificial intelligence and philosophical creativity: from analytics to crealectics. Human Affairs 30(4), 597‑607.

Mueller, V. C. (2012). Introduction: philosophy and theory of artificial intelligence. Minds and Machines 22(2), 67‑69.

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT press.

Popper, K. R. (1963). Science as falsification. Conjectures and refutations 1(1963), 33‑39.

Rasmussen, C. E. (2003). Gaussian processes in machine learning. In Summer school on machine learning, 63‑71. Springer.

Searle, J. R. (2002). Consciousness and language. Cambridge University Press. - Shumailov, I., Shumaylov, Z., Zhao, Y., Papernot, N., Anderson, R., & Gal, Y. (2024). AI models collapse when trained on recursively generated data. Nature, 631(8022), 755‑759.

Simon, J., Rieder, G., & Branford, J. (2024). The philosophy and ethics of AI: Conceptual, empirical, and technological investigations into values: CEPE/IACAP 2021: Introduction to topical collection. Digital Society, 3(1), Article 10.

Sison, A. J. G., Daza, M. T., Gozalo-Brizuela, R., & Garrido-Merch.n, E. C. (2024). ChatGPT: More than a “weapon of mass deception” ethical challenges and responses from the human-centered artificial intelligence (HCAI) perspective. International Journal of Human-Computer Interaction, 40(17), 4853‑4872.

Tait, W. W. (2002). Noesis: Plato on exact science. En D. B. Malament (ed.), Reading natural philosophy: Essays in the history and philosophy of science and mathematics (pp. 11‑30). Open Court.

Tylman, W. (2018). Computer science and philosophy: did Plato foresee object- oriented programming?” Foundations of science 23(1), 159‑72.

Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J., Chen, Z., Tang, J., Chen, X., Lin, Y., Zhao, W. X., Wei, Z., & Wen, J. (2024). A survey on large language model based autonomous agents. Frontiers of Computer Science, 18(6), Article 186345.

Weinberger, D. (1988). Artificial intelligence and Plato’s cave. Idealistic studies 18(1), 1‑9.

Zhang, Y. (2022). A historical interaction between artificial intelligence and philosophy. arXiv Preprint arXiv:2208.04148.

Downloads

Published

2026-01-15

How to Cite

Plato’s Myth of the Digital Cave: The Role of Generative Artificial Intelligence in the World of Ideas and its Content as the Shadow of Art. (2026). Razón Y Fe, 289(1467), 213-241. https://doi.org/10.14422/ryf.vol289.i1467.y2025.001